Nuprl Lemma : mdivisor_of_atom_is_assoc2

g:IAbMonoid. ((∀a,b:|g|.  Stable{a b})  (∀a,b:|g|.  ((¬(g-unit(a)))  Atomic(b)  (a b)  (a b))))


Proof




Definitions occuring in Statement :  matomic: Atomic(a) massoc: b munit: g-unit(u) mdivides: a stable: Stable{P} all: x:A. B[x] not: ¬A implies:  Q iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] matomic: Atomic(a) and: P ∧ Q massoc: b symmetrize: Symmetrize(x,y.R[x; y];a;b) stable: Stable{P} uimplies: supposing a not: ¬A mreducible: Reducible(a) false: False mdivides: a exists: x:A. B[x] cand: c∧ B infix_ap: y munit: g-unit(u) squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  mdivides_wf matomic_wf not_wf munit_wf grp_car_wf all_wf stable_wf iabmonoid_wf equal_wf grp_op_wf exists_wf squash_wf true_wf mon_assoc iff_weakening_equal mon_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination sqequalRule lambdaEquality because_Cache productElimination independent_pairFormation independent_isectElimination independent_functionElimination voidElimination dependent_pairFormation productEquality applyEquality hyp_replacement equalitySymmetry applyLambdaEquality imageElimination equalityTransitivity universeEquality equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}g:IAbMonoid
    ((\mforall{}a,b:|g|.    Stable\{a  |  b\})  {}\mRightarrow{}  (\mforall{}a,b:|g|.    ((\mneg{}(g-unit(a)))  {}\mRightarrow{}  Atomic(b)  {}\mRightarrow{}  (a  |  b)  {}\mRightarrow{}  (a  \msim{}  b))))



Date html generated: 2017_10_01-AM-09_58_16
Last ObjectModification: 2017_03_03-PM-00_59_44

Theory : factor_1


Home Index