Nuprl Lemma : bsublist_functionality_wrt_bsublist
∀s:DSet. ∀as,as',bs,bs':|s| List.
  ((↑bsuplist(s;as;bs)) 
⇒ (↑bsublist(s;as';bs')) 
⇒ (↑(bsublist(s;as;as') 
⇒b bsublist(s;bs;bs'))))
Proof
Definitions occuring in Statement : 
bsuplist: bsuplist(s;as;bs)
, 
bsublist: bsublist(s;as;bs)
, 
list: T List
, 
bimplies: p 
⇒b q
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
dset: DSet
, 
bsuplist: bsuplist(s;as;bs)
, 
guard: {T}
Lemmas referenced : 
iff_weakening_uiff, 
assert_wf, 
bimplies_wf, 
bsublist_wf, 
isect_wf, 
assert_of_bimplies, 
assert_witness, 
bsuplist_wf, 
list_wf, 
set_car_wf, 
dset_wf, 
bsublist_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality_alt, 
because_Cache, 
universeIsType, 
lambdaEquality_alt, 
independent_functionElimination, 
productElimination, 
isect_memberFormation_alt, 
inhabitedIsType, 
setElimination, 
rename
Latex:
\mforall{}s:DSet.  \mforall{}as,as',bs,bs':|s|  List.
    ((\muparrow{}bsuplist(s;as;bs))  {}\mRightarrow{}  (\muparrow{}bsublist(s;as';bs'))  {}\mRightarrow{}  (\muparrow{}(bsublist(s;as;as')  {}\mRightarrow{}\msubb{}  bsublist(s;bs;bs'))))
Date html generated:
2019_10_16-PM-01_05_18
Last ObjectModification:
2018_10_08-PM-05_45_38
Theory : list_2
Home
Index