Nuprl Lemma : bsublist_functionality_wrt_bsublist

s:DSet. ∀as,as',bs,bs':|s| List.
  ((↑bsuplist(s;as;bs))  (↑bsublist(s;as';bs'))  (↑(bsublist(s;as;as') b bsublist(s;bs;bs'))))


Proof




Definitions occuring in Statement :  bsuplist: bsuplist(s;as;bs) bsublist: bsublist(s;as;bs) list: List bimplies: b q assert: b all: x:A. B[x] implies:  Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q dset: DSet bsuplist: bsuplist(s;as;bs) guard: {T}
Lemmas referenced :  iff_weakening_uiff assert_wf bimplies_wf bsublist_wf isect_wf assert_of_bimplies assert_witness bsuplist_wf list_wf set_car_wf dset_wf bsublist_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis sqequalRule isect_memberEquality_alt because_Cache universeIsType lambdaEquality_alt independent_functionElimination productElimination isect_memberFormation_alt inhabitedIsType setElimination rename

Latex:
\mforall{}s:DSet.  \mforall{}as,as',bs,bs':|s|  List.
    ((\muparrow{}bsuplist(s;as;bs))  {}\mRightarrow{}  (\muparrow{}bsublist(s;as';bs'))  {}\mRightarrow{}  (\muparrow{}(bsublist(s;as;as')  {}\mRightarrow{}\msubb{}  bsublist(s;bs;bs'))))



Date html generated: 2019_10_16-PM-01_05_18
Last ObjectModification: 2018_10_08-PM-05_45_38

Theory : list_2


Home Index