Nuprl Lemma : mem_bsublist_imp
∀s:DSet. ∀as,bs:|s| List.  ((↑bsublist(s;as;bs)) 
⇒ (∀c:|s|. ((↑(c ∈b as)) 
⇒ (↑(c ∈b bs)))))
Proof
Definitions occuring in Statement : 
bsublist: bsublist(s;as;bs)
, 
mem: a ∈b as
, 
list: T List
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
gt: i > j
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
Lemmas referenced : 
gt_wf, 
count_wf, 
set_car_wf, 
le_wf, 
count_bsublist_a, 
mem_iff_count_nzero, 
assert_wf, 
mem_wf, 
bsublist_wf, 
list_wf, 
dset_wf, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
sqequalRule, 
functionIsType, 
independent_functionElimination, 
productElimination, 
because_Cache, 
inhabitedIsType, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation
Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    ((\muparrow{}bsublist(s;as;bs))  {}\mRightarrow{}  (\mforall{}c:|s|.  ((\muparrow{}(c  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (\muparrow{}(c  \mmember{}\msubb{}  bs)))))
Date html generated:
2019_10_16-PM-01_05_08
Last ObjectModification:
2018_10_08-AM-11_44_31
Theory : list_2
Home
Index