Nuprl Lemma : mem_bsublist_imp

s:DSet. ∀as,bs:|s| List.  ((↑bsublist(s;as;bs))  (∀c:|s|. ((↑(c ∈b as))  (↑(c ∈b bs)))))


Proof




Definitions occuring in Statement :  bsublist: bsublist(s;as;bs) mem: a ∈b as list: List assert: b all: x:A. B[x] implies:  Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q gt: i > j member: t ∈ T uall: [x:A]. B[x] prop: dset: DSet iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q le: A ≤ B uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top
Lemmas referenced :  gt_wf count_wf set_car_wf le_wf count_bsublist_a mem_iff_count_nzero assert_wf mem_wf bsublist_wf list_wf dset_wf decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid isectElimination thin dependent_functionElimination hypothesisEquality natural_numberEquality setElimination rename sqequalRule functionIsType independent_functionElimination productElimination because_Cache inhabitedIsType unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    ((\muparrow{}bsublist(s;as;bs))  {}\mRightarrow{}  (\mforall{}c:|s|.  ((\muparrow{}(c  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (\muparrow{}(c  \mmember{}\msubb{}  bs)))))



Date html generated: 2019_10_16-PM-01_05_08
Last ObjectModification: 2018_10_08-AM-11_44_31

Theory : list_2


Home Index