Nuprl Lemma : oal_equal_char

a:LOSet. ∀b:AbDMon. ∀ps,qs:|oal(a;b)|.  (ps qs ∈ |oal(a;b)| ⇐⇒ ∀u:|a|. ((ps[u]) (qs[u]) ∈ |b|))


Proof




Definitions occuring in Statement :  lookup: as[k] oalist: oal(a;b) all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet prop: subtype_rel: A ⊆B rev_implies:  Q so_lambda: λ2x.t[x] abdmonoid: AbDMon dmon: DMon mon: Mon oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set so_apply: x[s] squash: T true: True uimplies: supposing a guard: {T}
Lemmas referenced :  set_car_wf equal_wf oalist_wf dset_wf all_wf grp_car_wf lookup_wf grp_id_wf abdmonoid_wf loset_wf squash_wf true_wf list_wf poset_sig_wf iff_weakening_equal lookups_same_a
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality dependent_functionElimination applyEquality lambdaEquality sqequalRule because_Cache imageElimination equalityTransitivity equalitySymmetry universeEquality productEquality cumulativity natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:|oal(a;b)|.    (ps  =  qs  \mLeftarrow{}{}\mRightarrow{}  \mforall{}u:|a|.  ((ps[u])  =  (qs[u])))



Date html generated: 2017_10_01-AM-10_02_26
Last ObjectModification: 2017_03_03-PM-01_04_42

Theory : polynom_2


Home Index