Nuprl Lemma : aa_min_ltree_spec2
t:aa_ltree(
). 
j:
.  ((aa_binary_search_tree(t) 
 (aa_min_ltree(t) = (inl j ))) 
 aa_bst_member_prop(j;t))
Proof
Definitions occuring in Statement : 
aa_binary_search_tree: aa_binary_search_tree(t), 
aa_bst_member_prop: aa_bst_member_prop(i;t), 
aa_min_ltree: aa_min_ltree(t), 
aa_ltree: aa_ltree(T), 
all:
x:A. B[x], 
implies: P 
 Q, 
and: P 
 Q, 
unit: Unit, 
inl: inl x , 
union: left + right, 
int:
, 
equal: s = t
Definitions : 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
type-monotone: Monotone(T.F[T]), 
member: t 
 T, 
aa_ltree: aa_ltree(T), 
all:
x:A. B[x], 
so_lambda: 
x.t[x], 
prop:
, 
and: P 
 Q, 
implies: P 
 Q, 
true: True, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
isl: isl(x), 
assert:
b, 
outl: outl(x), 
exists:
x:A. B[x], 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]), 
aa_bst_member_prop: aa_bst_member_prop(i;t), 
rev_implies: P 
 Q, 
iff: P 

 Q, 
not:
A, 
guard: {T}, 
or: P 
 Q, 
so_apply: x[s], 
aa_min_ltree: aa_min_ltree(t), 
aa_min_w_unit: aa_min_w_unit(u1;u2), 
sq_type: SQType(T), 
uiff: uiff(P;Q), 
bfalse: ff, 
imin: imin(a;b), 
so_apply: x[s1;s2;s3;s4;s5], 
aa_binary_search_tree: aa_binary_search_tree(t), 
bool:
, 
unit: Unit, 
it:
Lemmas : 
subtype_rel_simple_product, 
subtype_rel_sum, 
unit_wf2, 
aa_lt_node_wf, 
aa_lt_leaf_wf, 
aa_ltree_wf, 
aa_bst_member_prop_wf, 
aa_min_ltree_wf, 
aa_binary_search_tree_wf, 
all_wf, 
aa_ltree-induction, 
isl_wf, 
assert_wf, 
outl_wf, 
subtype_rel_self, 
unit_subtype_base, 
int_subtype_base, 
union_subtype_base, 
subtype_base_sq, 
equal_wf, 
assert_of_lt_int, 
bnot_of_le_int, 
assert_functionality_wrt_uiff, 
eqff_to_assert, 
bnot_wf, 
less_than_wf, 
lt_int_wf, 
assert_of_le_int, 
eqtt_to_assert, 
le_wf, 
uiff_transitivity, 
bool_subtype_base, 
bool_wf, 
le_int_wf, 
bool_cases, 
or_wf, 
false_wf, 
aa_ltree_ind_wf, 
and_wf, 
imin_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
not_wf, 
iff_transitivity, 
assert_of_eq_int, 
eq_int_wf
\mforall{}t:aa\_ltree(\mBbbZ{}).  \mforall{}j:\mBbbZ{}.
    ((aa\_binary\_search\_tree(t)  \mwedge{}  (aa\_min\_ltree(t)  =  (inl  j  )))  {}\mRightarrow{}  aa\_bst\_member\_prop(j;t))
Date html generated:
2013_03_20-AM-09_53_17
Last ObjectModification:
2012_11_27-AM-10_32_54
Home
Index