Nuprl Lemma : class-opt-class-classrel2
∀[Info,T:Type]. ∀[X,Y:EClass(T)]. ∀[v:T]. ∀[es:EO+(Info)]. ∀[e:E].
  uiff(v ∈ X?Y(e);((↑bag-null(X es e)) 
⇒ v ∈ Y(e)) ∧ ((¬↑bag-null(X es e)) 
⇒ v ∈ X(e)))
Proof
Definitions occuring in Statement : 
class-opt-class: X?Y
, 
classrel: v ∈ X(e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
universe: Type
, 
bag-null: bag-null(bs)
Lemmas : 
assert_wf, 
bag-null_wf, 
not_wf, 
classrel_wf, 
class-opt-class_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
eclass_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert-bag-null, 
eqff_to_assert, 
iff_transitivity, 
bnot_wf, 
equal-wf-T-base, 
bag_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
uiff_transitivity
Latex:
\mforall{}[Info,T:Type].  \mforall{}[X,Y:EClass(T)].  \mforall{}[v:T].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    uiff(v  \mmember{}  X?Y(e);((\muparrow{}bag-null(X  es  e))  {}\mRightarrow{}  v  \mmember{}  Y(e))  \mwedge{}  ((\mneg{}\muparrow{}bag-null(X  es  e))  {}\mRightarrow{}  v  \mmember{}  X(e)))
Date html generated:
2015_07_22-PM-00_08_21
Last ObjectModification:
2015_01_28-AM-11_42_34
Home
Index