Nuprl Lemma : assert-rcvd-inning-gt

[V:Type]
  ∀A:Id List. ∀r:consensus-rcv(V;A). ∀i:ℤ.
    (↑i <inning(r) ⇐⇒ ∃a:{b:Id| (b ∈ A)} . ∃v:V. ∃j:ℕ(i < j ∧ (r Vote[a;j;v] ∈ consensus-rcv(V;A))))


Proof




Definitions occuring in Statement :  rcvd-inning-gt: i <inning(r) cs-rcv-vote: Vote[a;i;v] consensus-rcv: consensus-rcv(V;A) Id: Id l_member: (x ∈ l) list: List nat: assert: b less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  int: universe: Type equal: t ∈ T
Lemmas :  false_wf exists_wf l_member_wf nat_wf less_than_wf subtype_rel_sum cs-rcv-vote_wf assert_of_lt_int assert_wf lt_int_wf assert_witness consensus-rcv_wf list_wf Id_wf btrue_wf and_wf equal_wf isl_wf bfalse_wf btrue_neq_bfalse outr_wf set_wf le_wf less_than_transitivity1 le_weakening
\mforall{}[V:Type]
    \mforall{}A:Id  List.  \mforall{}r:consensus-rcv(V;A).  \mforall{}i:\mBbbZ{}.
        (\muparrow{}i  <z  inning(r)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:\{b:Id|  (b  \mmember{}  A)\}  .  \mexists{}v:V.  \mexists{}j:\mBbbN{}.  (i  <  j  \mwedge{}  (r  =  Vote[a;j;v])))



Date html generated: 2015_07_17-AM-11_47_32
Last ObjectModification: 2015_01_28-AM-01_31_17

Home Index