Nuprl Lemma : es-interface-accum-val

[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[b,f:Top]. ∀[e:E].
  es-interface-accum(f;b;X)(e) accumulate (with value and list item e):
                                  X(e)
                                 over list:
                                   ≤(X)(e)
                                 with starting value:
                                  b) 
  supposing ↑e ∈b es-interface-accum(f;b;X)


Proof




Definitions occuring in Statement :  es-interface-accum: es-interface-accum(f;x;X) es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E list_accum: list_accum assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top apply: a universe: Type sqequal: t
Lemmas :  eq_int_wf bag-size_wf top_wf nat_wf bool_wf eqtt_to_assert assert_of_eq_int bag_only_single_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base bag_size_empty_lemma assert_wf single-bag_wf assert-bnot neg_assert_of_eq_int empty-bag_wf es-E_wf event-ordering+_subtype event-ordering+_wf bag_wf

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[b,f:Top].  \mforall{}[e:E].
    es-interface-accum(f;b;X)(e)  \msim{}  accumulate  (with  value  b  and  list  item  e):
                                                                    f  b  X(e)
                                                                  over  list:
                                                                      \mleq{}(X)(e)
                                                                  with  starting  value:
                                                                    b) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  es-interface-accum(f;b;X)



Date html generated: 2015_07_20-PM-03_46_33
Last ObjectModification: 2015_01_27-PM-10_08_11

Home Index