Nuprl Lemma : three-intersecting-wait-set

t:ℕ. ∀A:Id List.
  ({a:Id| (a ∈ A)}  ~ ℕ(3 t) 1
   (∀W:{a:Id| (a ∈ A)}  List List
        ((∀ws:{a:Id| (a ∈ A)}  List. ((ws ∈ W) ⇐⇒ (||ws|| ((2 t) 1) ∈ ℤ) ∧ no_repeats({a:Id| (a ∈ A)} ;ws)))
         three-intersection(A;W))))


Proof




Definitions occuring in Statement :  three-intersection: three-intersection(A;W) equipollent: B Id: Id no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| list: List int_seg: {i..j-} nat: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  multiply: m add: m natural_number: $n int: equal: t ∈ T
Lemmas :  combinations-n-intersecting false_wf le_wf all_wf list_wf Id_wf l_member_wf iff_wf length_wf no_repeats_wf equipollent_wf int_seg_wf nat_wf cons_wf combination_wf subtract_wf nil_wf l_all_iff exists_wf l_all_wf2 l_all_cons
\mforall{}t:\mBbbN{}.  \mforall{}A:Id  List.
    (\{a:Id|  (a  \mmember{}  A)\}    \msim{}  \mBbbN{}(3  *  t)  +  1
    {}\mRightarrow{}  (\mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List
                ((\mforall{}ws:\{a:Id|  (a  \mmember{}  A)\}    List
                        ((ws  \mmember{}  W)  \mLeftarrow{}{}\mRightarrow{}  (||ws||  =  ((2  *  t)  +  1))  \mwedge{}  no\_repeats(\{a:Id|  (a  \mmember{}  A)\}  ;ws)))
                {}\mRightarrow{}  three-intersection(A;W))))



Date html generated: 2015_07_17-AM-11_29_01
Last ObjectModification: 2015_01_28-AM-01_35_48

Home Index