Nuprl Lemma : two-intersecting-wait-set-exists'

t:ℕ. ∀A:Id List.
  (∃W:Id List List
    ((∀ws:Id List. ((ws ∈ W) ⇐⇒ (||ws|| (t 1) ∈ ℤ) ∧ no_repeats(Id;ws) ∧ (∀x∈ws.(x ∈ A))))
    ∧ (∀ws1∈W.(∀ws2∈W.∃a:Id. ((a ∈ ws1) ∧ (a ∈ ws2)))))) supposing 
     (no_repeats(Id;A) and 
     (||A|| ((2 t) 1) ∈ ℤ))


Proof




Definitions occuring in Statement :  Id: Id l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| list: List nat: uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Lemmas :  l_member_wf subtype_rel_list list_wf length_wf no_repeats_wf l_all_wf2 Id_wf subtype_base_sq list_subtype_base atom2_subtype_base select_wf sq_stable__le sq_stable__l_member decidable__equal_Id equal_wf int_seg_wf exists_wf iff_weakening_equal list-set-type2 no_repeats-settype no_repeats-subtype nat_wf less_than_wf equal_functionality_wrt_subtype_rel2 l_member-settype
\mforall{}t:\mBbbN{}.  \mforall{}A:Id  List.
    (\mexists{}W:Id  List  List
        ((\mforall{}ws:Id  List.  ((ws  \mmember{}  W)  \mLeftarrow{}{}\mRightarrow{}  (||ws||  =  (t  +  1))  \mwedge{}  no\_repeats(Id;ws)  \mwedge{}  (\mforall{}x\mmember{}ws.(x  \mmember{}  A))))
        \mwedge{}  (\mforall{}ws1\mmember{}W.(\mforall{}ws2\mmember{}W.\mexists{}a:Id.  ((a  \mmember{}  ws1)  \mwedge{}  (a  \mmember{}  ws2))))))  supposing 
          (no\_repeats(Id;A)  and 
          (||A||  =  ((2  *  t)  +  1)))



Date html generated: 2015_07_17-AM-11_29_21
Last ObjectModification: 2015_02_04-PM-05_00_01

Home Index