Nuprl Lemma : collect_accum_wf

[A,B:Type]. ∀[P:B ─→ 𝔹]. ∀[num:A ─→ ℕ]. ∀[init:B]. ∀[f:B ─→ A ─→ B].
  (collect_accum(x.num[x];init;a,v.f[a;v];a.P[a]) ∈ (ℤ × B × (B Top)) ─→ A ─→ (ℤ × B × (B Top)))


Proof




Definitions occuring in Statement :  collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) nat: bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] product: x:A × B[x] union: left right int: universe: Type
Lemmas :  bool_wf eqtt_to_assert value-type-has-value nat_wf set-value-type le_wf int-value-type lt_int_wf assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf top_wf
\mforall{}[A,B:Type].  \mforall{}[P:B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[init:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].
    (collect\_accum(x.num[x];init;a,v.f[a;v];a.P[a])  \mmember{}  (\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top))  {}\mrightarrow{}  A  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top)))



Date html generated: 2015_07_17-AM-08_59_54
Last ObjectModification: 2015_01_27-PM-01_02_53

Home Index