Nuprl Lemma : Q-R-glued-first

[Info:Type]
  es:EO+(Info)
    [Q,R:E  E  ]. [A,B:Type].
      Ias:EClass(A) List. Ibs:EClass(B) List. f:E(first-class(Ias))  B.
        ((i:||Ias||. Ias[i]:Q f  Ibs[i]:R)
            first-class(Ias):Q f  first-class(Ibs):R 
              supposing (Ia1,Ia2Ias.  e,e':E.
                                          (((Q e e'))  ((Q e' e))) supposing ((e'  Ia2) and (e  Ia1)))) supposi\000Cng 
           ((||Ias|| = ||Ibs||) and 
           (Ib1,Ib2Ibs.  Ib1  Ib2 = 0) and 
           (Ia1,Ia2Ias.  Ia1  Ia2 = 0))


Proof not projected




Definitions occuring in Statement :  Q-R-glued: Ia:Qa f  Ib:Rb es-interface-disjoint: X  Y = 0 es-E-interface: E(X) first-class: first-class(L) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E select: l[i] length: ||as|| assert: b int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] prop: all: x:A. B[x] not: A implies: P  Q and: P  Q apply: f a function: x:A  B[x] list: type List natural_number: $n int: universe: Type equal: s = t pairwise: (x,yL.  P[x; y])
Definitions :  so_lambda: x y.t[x; y] member: t  T prop: all: x:A. B[x] uall: [x:A]. B[x] subtype: S  T le: A  B top: Top cand: A c B false: False ycomb: Y not: A and: P  Q implies: P  Q length: ||as|| es-interface-disjoint: X  Y = 0 pairwise: (x,yL.  P[x; y]) uimplies: b supposing a reduce: reduce(f;k;as) first-class: first-class(L) suptype: suptype(S; T) so_lambda: x.t[x] es-E-interface: E(X) true: True ifthenelse: if b then t else f fi  guard: {T} btrue: tt or: P  Q assert: b rev_implies: P  Q iff: P  Q rel_equivalent: R1  R2 infix_ap: x f y es-interface-predicate: {I} rel-restriction: R|P rel_or: R1  R2 exists: x:A. B[x] Q-R-glued: Ia:Qa f  Ib:Rb l_exists: (xL. P[x]) so_apply: x[s1;s2] lelt: i  j < k int_seg: {i..j} so_apply: x[s] sq_type: SQType(T) bfalse: ff lt_int: i <z j bnot: b le_int: i z j select: l[i] l_all: (xL.P[x]) decidable: Dec(P)
Lemmas :  event-ordering+_wf event-ordering+_inc es-E_wf eclass_wf first-class_wf es-E-interface_wf es-interface-disjoint_wf length_wf_nat non_neg_length length_cons length_wf es-interface-top not_wf int_seg_wf length_wf2 int_seg_properties top_wf Error :eclass_wf,  select_wf in-eclass_wf assert_wf Q-R-glued-empty equal_wf Q-R-glued_wf isect_wf all_wf pairwise_wf subtype_rel_self subtype_rel_sets assert_elim bool_subtype_base bool_wf subtype_base_sq is-cond-class pairwise-cons select_cons_tl_sq Q-R-glued-conditional cond-class_wf subtype_rel_function is-first-class and_functionality_wrt_iff l_member_wf l_exists_wf es-interface-conditional-domain-iff decidable__assert assert_witness Q-R-glues_wf es-interface-predicate_wf rel-restriction_wf rel_or_wf Q-R-glues_functionality select_member

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info)
        \mforall{}[Q,R:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[A,B:Type].
            \mforall{}Ias:EClass(A)  List.  \mforall{}Ibs:EClass(B)  List.  \mforall{}f:E(first-class(Ias))  {}\mrightarrow{}  B.
                ((\mforall{}i:\mBbbN{}||Ias||.  Ias[i]:Q  \mrightarrow{}{}f{}\mrightarrow{}    Ibs[i]:R)
                      {}\mRightarrow{}  first-class(Ias):Q  \mrightarrow{}{}f{}\mrightarrow{}    first-class(Ibs):R 
                            supposing  (\mforall{}Ia1,Ia2\mmember{}Ias.    \mforall{}e,e':E.
                                                                                    ((\mneg{}(Q  e  e'))  \mwedge{}  (\mneg{}(Q  e'  e)))  supposing 
                                                                                          ((\muparrow{}e'  \mmember{}\msubb{}  Ia2)  and 
                                                                                          (\muparrow{}e  \mmember{}\msubb{}  Ia1))))  supposing 
                      ((||Ias||  =  ||Ibs||)  and 
                      (\mforall{}Ib1,Ib2\mmember{}Ibs.    Ib1  \mcap{}  Ib2  =  0)  and 
                      (\mforall{}Ia1,Ia2\mmember{}Ias.    Ia1  \mcap{}  Ia2  =  0))


Date html generated: 2012_01_23-PM-12_29_26
Last ObjectModification: 2011_12_13-PM-02_41_37

Home Index