Nuprl Lemma : collect_accm_invariant

[Info:Type]
  es:EO+(Info)
    [A:Type]
      P:{L:A List| 0 < ||L||}   . num:A  . X:EClass(A). e:E.
        let s = list_accum(b,e.collect_accm(v.P[v];v.num[v]) b X(e);<-1, [], inr 0 >;(X)(e)) in
         let n = imax-list([-1 / map(e.num[X(e)];(X)(e))]) in
         let vs = mapfilter(e.X(e);e.(num[X(e)] = n);(X)(e)) in
         e'e.e' is first@ loc(e) s.t.  e.collect-event(es;X;n;v.num[v];L.P[L];e)
          (((e = e')  (s = <n + 1, [], inl vs >))  (((e = e'))  (s = <n + 1, [], inr 0 >)))
          (e'e.collect-event(es;X;n;v.num[v];L.P[L];e')  (s = <n, vs, inr 0 >)) 
        supposing e  X


Proof not projected




Definitions occuring in Statement :  collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) collect_accm: collect_accm(v.P[v];v.num[v]) es-first-at: e is first@ i s.t.  e.P[e] alle-le: ee'.P[e] existse-le: ee'.P[e] es-loc: loc(e) es-E: E map: map(f;as) length: ||as|| eq_int: (i = j) assert: b bool: nat: let: let uimplies: b supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] all: x:A. B[x] not: A or: P  Q and: P  Q less_than: a < b set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] pair: <a, b> product: x:A  B[x] inr: inr x  inl: inl x  union: left + right cons: [car / cdr] nil: [] list: type List add: n + m minus: -n natural_number: $n int: universe: Type equal: s = t mapfilter: mapfilter(f;P;L) list_accum: list_accum(x,a.f[x; a];y;l) imax-list: imax-list(L)
Definitions :  so_lambda: x.t[x] ycomb: Y ifthenelse: if b then t else f fi  btrue: tt so_lambda: x y.t[x; y] true: True squash: T prop: false: False le: A  B ge: i  j  implies: P  Q member: t  T not: A top: Top or: P  Q so_apply: x[s] assert: b uimplies: b supposing a nat: length: ||as|| all: x:A. B[x] uall: [x:A]. B[x] bfalse: ff and: P  Q es-E-interface: E(X) label: ...$L... t cand: A c B subtype: S  T list_accum: list_accum(x,a.f[x; a];y;l) imax: imax(a;b) let: let collect_accm: collect_accm(v.P[v];v.num[v]) guard: {T} map: map(f;as) spreadn: spread3 exists: x:A. B[x] es-le: e loc e'  existse-le: ee'.P[e] sq_type: SQType(T) so_apply: x[s1;s2] strongwellfounded: SWellFounded(R[x; y]) unit: Unit bool: uiff: uiff(P;Q) decidable: Dec(P) it: has-value: has-value(a)
Lemmas :  assert_elim eclass_wf assert_wf equal_wf decidable__collect-event collect-event_wf es-first-at-exists-cases non_neg_length length_wf length-map es-interface-predecessors_wf bool_subtype_base bool_wf subtype_base_sq event-ordering+_wf es-E_wf eclass-val_wf event-ordering+_inc es-loc_wf Id_wf es-E-interface_wf map_wf imax-list_wf es-causl_wf le_wf nat_wf less_than_wf ge_wf nat_properties es-causl-swellfnd es-interface-top in-eclass_wf assert_witness and_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert bool_cases not_wf bnot_wf es-prior-interface-causl eclass-val_wf2 es-prior-interface_wf top_wf es-interface-subtype_rel2 es-prior-interface_wf0 es-interface-predecessors-step-sq length_wf2 length_wf_nil length_nil list_accum_wf collect_accm_wf list_accum_append length_wf_nat int_subtype_base set_subtype_base assert_of_lt_int bnot_of_le_int assert_functionality_wrt_uiff lt_int_wf assert_of_le_int le_int_wf decidable__lt nat_inc_real real-has-value alle-le_wf es-first-at_wf existse-le_wf or_wf not_functionality_wrt_uiff assert_of_eq_int mapfilter-singleton mapfilter_wf l_member_wf es-interface-val_wf2 eq_int_wf mapfilter-append length_append append_wf ifthenelse_wf length_cons bnot_of_lt_int es-le_wf pair_wf es-locl_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info)
        \mforall{}[A:Type]
            \mforall{}P:\{L:A  List|  0  <  ||L||\}    {}\mrightarrow{}  \mBbbB{}.  \mforall{}num:A  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:EClass(A).  \mforall{}e:E.
                let  s  =  list\_accum(b,e.collect\_accm(v.P[v];v.num[v])  b  X(e);<-1,  [],  inr  0  >\mleq{}(X)(e))  in
                  let  n  =  imax-list([-1  /  map(\mlambda{}e.num[X(e)];\mleq{}(X)(e))])  in
                  let  vs  =  mapfilter(\mlambda{}e.X(e);\mlambda{}e.(num[X(e)]  =\msubz{}  n);\mleq{}(X)(e))  in
                  \mexists{}e'\mleq{}e.e'  is  first@  loc(e)  s.t.    e.collect-event(es;X;n;v.num[v];L.P[L];e)
                  \mwedge{}  (((e  =  e')  \mwedge{}  (s  =  <n  +  1,  [],  inl  vs  >))  \mvee{}  ((\mneg{}(e  =  e'))  \mwedge{}  (s  =  <n  +  1,  [],  inr  0  >)))
                  \mvee{}  (\mforall{}e'\mleq{}e.\mneg{}collect-event(es;X;n;v.num[v];L.P[L];e')  \mwedge{}  (s  =  <n,  vs,  inr  0  >)) 
                supposing  \muparrow{}e  \mmember{}\msubb{}  X


Date html generated: 2012_01_23-PM-12_27_41
Last ObjectModification: 2011_12_14-AM-09_19_35

Home Index