{ [env:E#Env]. [erl:E#Rule].  (compileE#Rule(env;erl)  CompilationResult) }

{ Proof }



Definitions occuring in Statement :  compile-esharp-rule: compileE#Rule(env;erl) compilation-result: CompilationResult esharp-rule: E#Rule esharp-env: E#Env uall: [x:A]. B[x] member: t  T
Definitions :  pRunType: pRunType(T.M[T]) pEnvType: pEnvType(T.M[T]) RunType: RunType EnvType: EnvType lambda: x.A[x] ycomb: Y so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) classderiv_ind: classderiv_ind pi1: fst(t) prop-rule: PropRule subtype: S  T prop-rule-meaning: Meaning(pr) l_member: (x  l) void: Void false: False name: Name limited-type: LimitedType pair: <a, b> natural_number: $n cdv-types: cdv-types(dv) length: ||as|| implies: P  Q classderiv: ClassDerivation cdv-wf: WF(dv) int: listp: A List esharp-expr: esharp-expr(env;x) hd: hd(l) eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) assert: b rec: rec(x.A[x]) expression: Expression list: type List le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] so_lambda: x y.t[x; y] so_lambda: x.t[x] compilation-result: CompilationResult product: x:A  B[x] function: x:A  B[x] event-ordering+: EO+(Info) Message: Message prop: universe: Type set: {x:A| B[x]}  InitSys: InitSys strong-realizes: strong-realizes std-n2m: std-n2m() std-l2m: std-l2m() reliable-env: reliable-env(env; r) apply: f a compile-esharp-rule: compileE#Rule(env;erl) esharp-rule: E#Rule esharp-env: E#Env equal: s = t axiom: Ax member: t  T uall: [x:A]. B[x] isect: x:A. B[x] Auto: Error :Auto,  Complete: Error :Complete,  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  Unfold: Error :Unfold,  tactic: Error :tactic,  true: True divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_contains: A  B reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b path-goes-thru: x-f*-y thru i lg-edge: lg-edge(g;a;b) infix_ap: x f y decidable: Dec(P) iff: P  Q uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) add: n + m tl: tl(l) cons: [car / cdr] nil: [] decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  es-E-interface: E(X) cand: A c B Id: Id bool: pi2: snd(t) list_ind: list_ind def intensional-universe: IType nat: limited-type-level: limited-type-level{i:l}(n;T) atom: Atom$n atom: Atom base-deriv: BaseDef top: Top unit: Unit union: left + right base: Base sq_type: SQType(T) sqequal: s ~ t suptype: suptype(S; T) fpf-cap: f(x)?z deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) tag-by: zT rev_implies: P  Q or: P  Q ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B bag: bag(T) nequal: a  b  T  rationals:
Lemmas :  cdv-types-non-empty intensional-universe_wf2 pos_length subtype_rel_self length_wf_nat union_subtype_base base-deriv_wf top_wf unit_wf base_wf rec_subtype_base subtype_base_sq product_subtype_base unit_subtype_base intensional-universe_subtype_base set_subtype_base intensional-universe_wf nat_wf limited-type-level_wf atom2_subtype_base list_subtype_base atom_subtype_base true_wf squash_wf name_wf limited-type_wf bool_wf Id_wf assert_wf pi1_wf listp_properties sq_stable_from_decidable decidable__le false_wf not_wf le_wf ge_wf subtype_rel_wf listp_wf classderiv_wf cdv-wf_wf member_wf hd_wf cdv-types_wf event-ordering+_wf Message_wf InitSys_wf strong-realizes_wf std-n2m_wf std-l2m_wf length_wf1 esharp-expr_wf esharp-env_wf esharp-rule_wf pos_length3 prop-rule-meaning_wf prop-rule_wf EnvType_wf RunType_wf reliable-env_wf2

\mforall{}[env:E\#Env].  \mforall{}[erl:E\#Rule].    (compileE\#Rule(env;erl)  \mmember{}  CompilationResult)


Date html generated: 2011_08_17-PM-04_38_02
Last ObjectModification: 2011_06_18-AM-11_48_52

Home Index