{ [M:Type  Type]
    n2m:  pMsg(P.M[P]). l2m:Id  pMsg(P.M[P]).
    Cs0:component(P.M[P]) List. G0:LabeledDAG(pInTransit(P.M[P])).
    env:pEnvType(P.M[P]). t:.
      let r = pRun(<Cs0, G0>;env;n2m;l2m) in
          let info,Cs,G = r t in 
          xG.let ev = fst(x) in
                   ((fst(ev))  t)
                    (m:lg-size(G0). (ev = (fst(lg-label(G0;m))))) 
    supposing Continuous+(P.M[P]) }

{ Proof }



Definitions occuring in Statement :  pRun: pRun(S0;env;nat2msg;loc2msg) pEnvType: pEnvType(T.M[T]) pInTransit: pInTransit(P.M[P]) component: component(P.M[P]) pMsg: pMsg(P.M[P]) lg-all: xG.P[x] ldag: LabeledDAG(T) lg-label: lg-label(g;x) lg-size: lg-size(g) Id: Id strong-type-continuous: Continuous+(T.F[T]) int_seg: {i..j} nat: let: let spreadn: spread3 uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) le: A  B all: x:A. B[x] exists: x:A. B[x] or: P  Q apply: f a function: x:A  B[x] pair: <a, b> product: x:A  B[x] list: type List natural_number: $n int: universe: Type equal: s = t
Definitions :  Knd: Knd IdLnk: IdLnk rationals: sq_type: SQType(T) unit: Unit do-chosen-command: do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm) pi2: snd(t) add: n + m l_member: (x  l) assert: b System: System(P.M[P]) guard: {T} tag-by: zT rev_implies: P  Q iff: P  Q fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) record+: record+ record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B bag: bag(T) true: True fpf-cap: f(x)?z length: ||as|| dep-isect: Error :dep-isect,  bool: void: Void intensional-universe: IType es-E-interface: E(X) lelt: i  j < k eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] pCom: pCom(P.M[P]) atom: Atom$n limited-type: LimitedType real: grp_car: |g| subtype: S  T top: Top is-dag: is-dag(g) strong-subtype: strong-subtype(A;B) ge: i  j  less_than: a < b uiff: uiff(P;Q) union: left + right labeled-graph: LabeledGraph(T) apply: f a set: {x:A| B[x]}  implies: P  Q false: False not: A pEnvType: pEnvType(T.M[T]) ldag: LabeledDAG(T) component: component(P.M[P]) list: type List pMsg: pMsg(P.M[P]) let: let lambda: x.A[x] pRun: pRun(S0;env;nat2msg;loc2msg) uimplies: b supposing a so_lambda: x.t[x] spreadn: spread3 strong-type-continuous: Continuous+(T.F[T]) uall: [x:A]. B[x] universe: Type nat: function: x:A  B[x] isect: x:A. B[x] ext-eq: A  B and: P  Q subtype_rel: A r B MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  pair: <a, b> lg-label: lg-label(g;x) pi1: fst(t) Id: Id int: product: x:A  B[x] equal: s = t lg-size: lg-size(g) natural_number: $n int_seg: {i..j} exists: x:A. B[x] le: A  B or: P  Q lg-all: xG.P[x] spread: spread def so_lambda: x y.t[x; y] CollapseTHENA: Error :CollapseTHENA,  prop: member: t  T all: x:A. B[x] so_apply: x[s] pInTransit: pInTransit(P.M[P]) AssertBY: Error :AssertBY,  Auto: Error :Auto,  RepUR: Error :RepUR,  tactic: Error :tactic,  D: Error :D,  MaAuto: Error :MaAuto,  fpf-dom: x  dom(f) nat_plus: pRunType: pRunType(T.M[T]) fulpRunType: fulpRunType(T.M[T]) suptype: suptype(S; T) RepeatFor: Error :RepeatFor,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) bnot: b lg-is-source: lg-is-source(g;i) bor: p q band: p  q bimplies: p  q es-eq-E: e = e' eq_lnk: a = b eq_id: a = b eq_str: Error :eq_str,  deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] infix_ap: x f y grp_blt: a < b set_blt: a < b null: null(as) eq_int: (i = j) le_int: i z j lt_int: i <z j eq_bool: p =b q btrue: tt ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] bfalse: ff SplitOn: Error :SplitOn,  lg-remove: lg-remove(g;n) skip: Error :skip,  Com: Com(P.M[P]) lg-in-edges: lg-in-edges(g;x) list_accum: list_accum(x,a.f[x; a];y;l) deliver-msg-to-comp: deliver-msg-to-comp(t;m;x;S;C) Process: Process(P.M[P]) process: process(P.M[P];P.E[P]) corec: corec(T.F[T]) sqequal: s ~ t Process-apply: Process-apply(P;m) cons: [car / cdr] lg-append: lg-append(g1;g2) add-cause: add-cause(ev;ext) pExt: pExt(P.M[P]) cand: A c B es-causl: (e < e') es-locl: (e <loc e') decidable: Dec(P) lg-edge: lg-edge(g;a;b) path-goes-thru: x-f*-y thru i cut-order: a (X;f) b collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) same-thread: same-thread(es;p;e;e') es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) es-fset-loc: i  locs(s) existse-between3: e(e1,e2].P[e] existse-between2: e[e1,e2].P[e] alle-between2: e[e1,e2].P[e] existse-between1: e[e1,e2).P[e] alle-between1: e[e1,e2).P[e] alle-le: ee'.P[e] alle-lt: e<e'.P[e] existse-le: ee'.P[e] existse-before: e<e'.P[e] es-causle: e c e' es-le: e loc e'  cs-precondition: state s may consider v in inning i cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-inning-committable: in state s, inning i could commit v  cs-inning-committed: in state s, inning i has committed v cs-passed: by state s, a passed inning i without archiving a value cs-archived: by state s, a archived v in inning i cs-not-completed: in state s, a has not completed inning i l_disjoint: l_disjoint(T;l1;l2) fset-closed: (s closed under fs) f-subset: xs  ys fset-member: a  s p-outcome: Outcome i-closed: i-closed(I) i-finite: i-finite(I) q-rel: q-rel(r;x) qless: r < s qle: r  s fun-connected: y is f*(x) l_all: (xL.P[x]) l_exists: (xL. P[x]) squash: T prime: prime(a) reducible: reducible(a) inject: Inj(A;B;f) l_contains: A  B grp_lt: a < b set_lt: a <p b set_leq: a  b assoced: a ~ b divides: b | a Repeat: Error :Repeat,  Subst': Error :Subst',  subtract: n - m BHyp: Error :BHyp,  com-kind: com-kind(c) token: "$token" atom: Atom deliver-msg: deliver-msg(t;m;x;Cs;L) create-component: create-component(t;P;x;Cs;L) comm-msg: comm-msg(c) nil: [] it: THENL_v2: Error :THENL,  THENL_cons: Error :THENL_cons,  THENL_cons: Error :THENL_nil,  Unfold: Error :Unfold
Lemmas :  comm-msg_wf int_subtype_base create-component_wf assert_of_eq_atom eq_atom_wf com-kind_wf deliver-msg_wf ifthenelse_wf bfalse_wf decidable__le lg-all_wf lg-all-map Error :dep-isect_wf,  lg-all-append Process_wf pExt_wf add-cause_wf Process-apply_wf eq_id_wf not_functionality_wrt_uiff assert-eq-id uall_wf deliver-msg-to-comp_wf list_accum_wf uiff_inversion lg-all-remove lg-remove_wf_dag le_int_wf lt_int_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff bool_subtype_base assert_of_lt_int bool_cases bool_wf lg-is-source_wf_dag bnot_wf assert_wf not_wf assert_of_bnot eqff_to_assert uiff_transitivity iff_weakening_uiff eqtt_to_assert subtype_rel_function nat_plus_wf pRun_wf2 pRunType_wf fulpRunType_wf subtype_rel_self int_seg_properties subtype_rel_simple_product pCom_wf pInTransit_wf top_wf member_wf subtype_rel_wf lg-label_wf_dag Id_wf pi1_wf_top nat_wf lg-size_wf_dag int_seg_wf le_wf strong-type-continuous_wf pMsg_wf component_wf ldag_wf pEnvType_wf pRun_wf lg-size_wf intensional-universe_wf false_wf is-dag_wf labeled-graph_wf subtype_rel-ldag pRun-System-invariant System_wf lg-all_wf_dag nat_properties do-chosen-command_wf unit_wf pi2_wf subtype_base_sq

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}Cs0:component(P.M[P])  List.
    \mforall{}G0:LabeledDAG(pInTransit(P.M[P])).  \mforall{}env:pEnvType(P.M[P]).  \mforall{}t:\mBbbN{}.
        let  r  =  pRun(<Cs0,  G0>env;n2m;l2m)  in
                let  info,Cs,G  =  r  t  in 
                \mforall{}x\mmember{}G.let  ev  =  fst(x)  in
                                  ((fst(ev))  \mleq{}  t)  \mvee{}  (\mexists{}m:\mBbbN{}lg-size(G0).  (ev  =  (fst(lg-label(G0;m))))) 
    supposing  Continuous+(P.M[P])


Date html generated: 2011_08_16-PM-07_03_45
Last ObjectModification: 2011_06_18-AM-11_17_13

Home Index