{ 
[Info,T,S:Type]. 
[X:EClass(T)]. 
[Y,Z:T 
 EClass(S)].
    (X >x> Y[x] || Z[x] = X >x> Y[x] || X >x> Z[x]) }
{ Proof }
Definitions occuring in Statement : 
parallel-class: X || Y, 
bind-class: X >x> Y[x], 
eclass: EClass(A[eo; e]), 
uall:
[x:A]. B[x], 
so_apply: x[s], 
function: x:A 
 B[x], 
universe: Type, 
equal: s = t
Definitions : 
atom_eq: atomeqn def, 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
sq_type: SQType(T), 
sqequal: s ~ t, 
rationals:
, 
append: as @ bs, 
guard: {T}, 
locl: locl(a), 
Knd: Knd, 
atom: Atom$n, 
l_member: (x 
 l), 
es-causle: e c
 e', 
existse-before:
e<e'.P[e], 
existse-le:
e
e'.P[e], 
alle-lt:
e<e'.P[e], 
alle-le:
e
e'.P[e], 
alle-between1:
e
[e1,e2).P[e], 
existse-between1:
e
[e1,e2).P[e], 
alle-between2:
e
[e1,e2].P[e], 
existse-between2:
e
[e1,e2].P[e], 
existse-between3:
e
(e1,e2].P[e], 
es-fset-loc: i 
 locs(s), 
exists:
x:A. B[x], 
es-r-immediate-pred: es-r-immediate-pred(es;R;e';e), 
same-thread: same-thread(es;p;e;e'), 
decidable: Dec(P), 
uni_sat: a = !x:T. Q[x], 
inv_funs: InvFuns(A;B;f;g), 
inject: Inj(A;B;f), 
eqfun_p: IsEqFun(T;eq), 
refl: Refl(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
usym: UniformlySym(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
uconnex: uconnex(T; x,y.R[x; y]), 
coprime: CoPrime(a,b), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
comm: Comm(T;op), 
inverse: Inverse(T;op;id;inv), 
bilinear: BiLinear(T;pl;tm), 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
action_p: IsAction(A;x;e;S;f), 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
cancel: Cancel(T;S;op), 
monot: monot(T;x,y.R[x; y];f), 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
monoid_hom_p: IsMonHom{M1,M2}(f), 
grp_leq: a 
 b, 
integ_dom_p: IsIntegDom(r), 
prime_ideal_p: IsPrimeIdeal(R;P), 
no_repeats: no_repeats(T;l), 
value-type: value-type(T), 
valueall-type: valueall-type(T), 
is_list_splitting: is_list_splitting(T;L;LL;L2;f), 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
req: x = y, 
rnonneg: rnonneg(r), 
rleq: x 
 y, 
i-member: r 
 I, 
partitions: partitions(I;p), 
modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f), 
squash:
T, 
sq_stable: SqStable(P), 
limited-type: LimitedType, 
es-locl: (e <loc e'), 
es-loc: loc(e), 
Id: Id, 
bool:
, 
record-update: r[x := v], 
eo-restrict: eo-restrict(eo;P), 
eo-forward: eo.e, 
bag-combine:
x
bs.f[x], 
bag-append: as + bs, 
permutation: permutation(T;L1;L2), 
quotient: x,y:A//B[x; y], 
nil: [], 
tag-by: z
T, 
rev_implies: P 
 Q, 
or: P 
 Q, 
implies: P 
 Q, 
iff: P 

 Q, 
record: record(x.T[x]), 
fset: FSet{T}, 
dataflow: dataflow(A;B), 
isect2: T1 
 T2, 
b-union: A 
 B, 
union: left + right, 
true: True, 
fpf-sub: f 
 g, 
deq: EqDecider(T), 
ma-state: State(ds), 
prop:
, 
class-program: ClassProgram(T), 
fpf-cap: f(x)?z, 
atom: Atom, 
top: Top, 
es-base-E: es-base-E(es), 
token: "$token", 
ifthenelse: if b then t else f fi , 
dep-isect: Error :dep-isect, 
eq_atom: x =a y, 
eq_atom: eq_atom$n(x;y), 
record+: record+, 
assert:
b, 
record-select: r.x, 
eclass-compose2: eclass-compose2(f;X;Y), 
subtype: S 
 T, 
event_ordering: EO, 
event-ordering+: EO+(Info), 
lambda:
x.A[x], 
so_lambda: 
x.t[x], 
pair: <a, b>, 
fpf: a:A fp-> B[a], 
strong-subtype: strong-subtype(A;B), 
le: A 
 B, 
ge: i 
 j , 
not:
A, 
less_than: a < b, 
uimplies: b supposing a, 
product: x:A 
 B[x], 
and: P 
 Q, 
uiff: uiff(P;Q), 
subtype_rel: A 
r B, 
all:
x:A. B[x], 
axiom: Ax, 
apply: f a, 
so_apply: x[s], 
parallel-class: X || Y, 
bind-class: X >x> Y[x], 
equal: s = t, 
universe: Type, 
uall:
[x:A]. B[x], 
eclass: EClass(A[eo; e]), 
so_lambda: 
x y.t[x; y], 
function: x:A 
 B[x], 
isect:
x:A. B[x], 
MaAuto: Error :MaAuto, 
Auto: Error :Auto, 
CollapseTHEN: Error :CollapseTHEN, 
ORELSE: Error :ORELSE, 
Try: Error :Try, 
RepeatFor: Error :RepeatFor, 
es-le: e 
loc e' , 
es-E: E, 
set: {x:A| B[x]} , 
list: type List, 
es-le-before:
loc(e), 
bag: bag(T), 
member: t 
 T, 
AssertBY: Error :AssertBY, 
CollapseTHENA: Error :CollapseTHENA, 
RepUR: Error :RepUR
Lemmas : 
es-le_wf, 
bag_wf, 
es-E_wf, 
subtype_rel_wf, 
subtype_rel_self, 
es-base-E_wf, 
es-le-before_wf2, 
event-ordering+_inc, 
event-ordering+_wf, 
eclass_wf, 
member_wf, 
permutation_wf, 
bag-combine_wf, 
iff_wf, 
rev_implies_wf, 
bag-combine-append-right, 
bag-append_wf, 
eo-forward_wf, 
member-eo-forward-E, 
Id_wf, 
es-locl_wf, 
es-loc_wf, 
sq_stable__all, 
sq_stable_from_decidable, 
decidable__es-le, 
assert_wf, 
uiff_wf, 
assert-eq-id, 
subtype_base_sq, 
true_wf, 
squash_wf
\mforall{}[Info,T,S:Type].  \mforall{}[X:EClass(T)].  \mforall{}[Y,Z:T  {}\mrightarrow{}  EClass(S)].
    (X  >x>  Y[x]  ||  Z[x]  =  X  >x>  Y[x]  ||  X  >x>  Z[x])
Date html generated:
2011_08_16-AM-11_37_52
Last ObjectModification:
2011_06_20-AM-00_30_16
Home
Index