{ 
[A:{A:
'| 
A} ]. 
[dfps:DataflowProgram(A) List]. 
[B:{B:Type| 
                                                         valueall-type(B)} ].
  
[F:k:
||dfps|| 
 bag(df-program-type(dfps[k])) 
 bag(B)].
    better-parallel-dataflow(
    ||dfps||;
k.map(
dfp.df-program-meaning(dfp);dfps)[k];
    F)
    = df-program-meaning(parallel-df-program-case1(B;F;dfps)) 
    supposing (F (
i.{})) = {} }
{ Proof }
Definitions occuring in Statement : 
parallel-df-program-case1: parallel-df-program-case1(B;F;dfps), 
df-program-meaning: df-program-meaning(dfp), 
df-program-type: df-program-type(dfp), 
dataflow-program: DataflowProgram(A), 
better-parallel-dataflow: better-parallel-dataflow, 
dataflow: dataflow(A;B), 
select: l[i], 
map: map(f;as), 
length: ||as||, 
int_seg: {i..j
}, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
squash:
T, 
set: {x:A| B[x]} , 
apply: f a, 
lambda:
x.A[x], 
function: x:A 
 B[x], 
list: type List, 
natural_number: $n, 
universe: Type, 
equal: s = t, 
empty-bag: {}, 
bag: bag(T), 
valueall-type: valueall-type(T)
Definitions : 
true: True, 
divides: b | a, 
assoced: a ~ b, 
set_leq: a 
 b, 
set_lt: a <p b, 
grp_lt: a < b, 
cand: A c
 B, 
l_contains: A 
 B, 
cmp-le: cmp-le(cmp;x;y), 
reducible: reducible(a), 
prime: prime(a), 
l_exists: (
x
L. P[x]), 
infix_ap: x f y, 
fun-connected: y is f*(x), 
qle: r 
 s, 
qless: r < s, 
q-rel: q-rel(r;x), 
sq_exists:
x:{A| B[x]}, 
i-finite: i-finite(I), 
i-closed: i-closed(I), 
p-outcome: Outcome, 
fset-member: a 
 s, 
f-subset: xs 
 ys, 
fset-closed: (s closed under fs), 
l_disjoint: l_disjoint(T;l1;l2), 
decidable: Dec(P), 
uni_sat: a = !x:T. Q[x], 
inv_funs: InvFuns(A;B;f;g), 
inject: Inj(A;B;f), 
eqfun_p: IsEqFun(T;eq), 
refl: Refl(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
usym: UniformlySym(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
uconnex: uconnex(T; x,y.R[x; y]), 
coprime: CoPrime(a,b), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
comm: Comm(T;op), 
inverse: Inverse(T;op;id;inv), 
bilinear: BiLinear(T;pl;tm), 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
action_p: IsAction(A;x;e;S;f), 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
cancel: Cancel(T;S;op), 
monot: monot(T;x,y.R[x; y];f), 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
monoid_hom_p: IsMonHom{M1,M2}(f), 
grp_leq: a 
 b, 
integ_dom_p: IsIntegDom(r), 
prime_ideal_p: IsPrimeIdeal(R;P), 
no_repeats: no_repeats(T;l), 
value-type: value-type(T), 
is_list_splitting: is_list_splitting(T;L;LL;L2;f), 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
bag-member: bag-member(T;x;bs), 
req: x = y, 
rnonneg: rnonneg(r), 
rleq: x 
 y, 
i-member: r 
 I, 
partitions: partitions(I;p), 
modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f), 
fpf-sub: f 
 g, 
sq_stable: SqStable(P), 
strict-bag-function: strict-bag-function(G;L;B;S), 
l_all: (
x
L.P[x]), 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
exists:
x:A. B[x], 
isl: isl(x), 
bnot: 
b, 
bl-all: (
x
L.P[x])_b, 
filter: filter(P;l), 
list_ind: list_ind def, 
permutation: permutation(T;L1;L2), 
select-tuple: x.n, 
sqequal: s ~ t, 
so_apply: x[s], 
or: P 
 Q, 
l_member: (x 
 l), 
assert:
b, 
nil: [], 
label: ...$L... t, 
grp_car: |g|, 
corec: corec(T.F[T]), 
listp: A List
, 
combination: Combination(n;T), 
rev_implies: P 
 Q, 
iff: P 

 Q, 
atom: Atom, 
rec: rec(x.A[x]), 
atom: Atom$n, 
Id: Id, 
qeq: qeq(r;s), 
bfalse: ff, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
guard: {T}, 
sq_type: SQType(T), 
tunion:
x:A.B[x], 
int_nzero: 

, 
b-union: A 
 B, 
quotient: x,y:A//B[x; y], 
has-valueall: has-valueall(a), 
upto: upto(n), 
callbyvalueall: callbyvalueall, 
nat:
, 
has-value: has-value(a), 
callbyvalue: callbyvalue, 
pair: <a, b>, 
fpf: a:A fp-> B[a], 
strong-subtype: strong-subtype(A;B), 
ge: i 
 j , 
product: x:A 
 B[x], 
uiff: uiff(P;Q), 
subtype_rel: A 
r B, 
parallel-df-prog: parallel-df-prog, 
tuple: tuple(n;i.F[i]), 
parallel-df-halt: parallel-df-halt(G;L;B;halt), 
bool:
, 
unit: Unit, 
top: Top, 
union: left + right, 
tuple-type: tuple-type(L), 
and: P 
 Q, 
lelt: i 
 j < k, 
less_than: a < b, 
void: Void, 
implies: P 
 Q, 
false: False, 
not:
A, 
le: A 
 B, 
natural_number: $n, 
real:
, 
rationals:
, 
subtype: S 
 T, 
int:
, 
limited-type: LimitedType, 
all:
x:A. B[x], 
empty-bag: {}, 
apply: f a, 
axiom: Ax, 
parallel-df-program-case1: parallel-df-program-case1(B;F;dfps), 
df-program-meaning: df-program-meaning(dfp), 
map: map(f;as), 
lambda:
x.A[x], 
length: ||as||, 
better-parallel-dataflow: better-parallel-dataflow, 
member: t 
 T, 
prop:
, 
squash:
T, 
list: type List, 
valueall-type: valueall-type(T), 
int_seg: {i..j
}, 
uall:
[x:A]. B[x], 
so_lambda: 
x.t[x], 
uimplies: b supposing a, 
isect:
x:A. B[x], 
dataflow: dataflow(A;B), 
equal: s = t, 
function: x:A 
 B[x], 
bag: bag(T), 
df-program-type: df-program-type(dfp), 
select: l[i], 
dataflow-program: DataflowProgram(A), 
set: {x:A| B[x]} , 
universe: Type, 
MaAuto: Error :MaAuto, 
Complete: Error :Complete, 
Try: Error :Try, 
CollapseTHEN: Error :CollapseTHEN, 
CollapseTHENA: Error :CollapseTHENA, 
RepeatFor: Error :RepeatFor, 
Unfold: Error :Unfold, 
Auto: Error :Auto, 
tactic: Error :tactic, 
fpf-cap: f(x)?z, 
intensional-universe: IType, 
THENM: Error :THENM, 
AssertBY: Error :AssertBY, 
fpf-dom: x 
 dom(f), 
Knd: Knd, 
IdLnk: IdLnk, 
append: as @ bs, 
cons: [car / cdr], 
hd: hd(l), 
last: last(L), 
remove-repeats: remove-repeats(eq;L), 
D: Error :D, 
ParallelOp: Error :ParallelOp, 
eq_bool: p =b q, 
lt_int: i <z j, 
le_int: i 
z j, 
eq_int: (i =
 j), 
eq_atom: x =a y, 
null: null(as), 
set_blt: a <
 b, 
grp_blt: a <
 b, 
dcdr-to-bool: [d]
, 
bor: p 
q, 
band: p 
 q, 
bimplies: p 

 q, 
eq_lnk: a = b, 
eq_id: a = b, 
name_eq: name_eq(x;y), 
deq-all-disjoint: deq-all-disjoint(eq;ass;bs), 
deq-disjoint: deq-disjoint(eq;as;bs), 
deq-member: deq-member(eq;x;L), 
q_le: q_le(r;s), 
q_less: q_less(r;s), 
eq_atom: eq_atom$n(x;y), 
eq_type: eq_type(T;T'), 
b-exists: (
i<n.P[i])_b, 
bl-exists: (
x
L.P[x])_b, 
n-tuple: n-tuple(n)
Lemmas : 
tuple_wf, 
select-tuple-tuple, 
assert-bl-all, 
subtype_rel_bag, 
member_upto, 
l_member_subtype, 
sq_stable__all, 
true_wf, 
l_all_wf2, 
sq_stable__and, 
decidable__lt, 
sq_stable__equal, 
intensional-universe_wf, 
intensional-universe_wf2, 
bag_wf, 
uall_wf, 
dataflow-program_wf, 
valueall-type_wf, 
int_seg_wf, 
df-program-type_wf, 
select_wf, 
dataflow_wf, 
squash_wf, 
length_wf1, 
empty-bag_wf, 
parallel-df-prog-meaning, 
real-has-value, 
int_inc_real, 
rational-has-value, 
upto_wf, 
rationals_wf, 
member_wf, 
int_nzero_wf, 
b-union_wf, 
bool_wf, 
ifthenelse_wf, 
tunion_wf, 
subtype_rel_wf, 
int-rational, 
btrue_wf, 
bfalse_wf, 
Id-has-valueall, 
Id_wf, 
list-valueall-type, 
le_wf, 
set-valueall-type, 
int-valueall-type, 
iff_wf, 
rev_implies_wf, 
better-parallel-dataflow_wf, 
length_wf_nat, 
top_wf, 
map_wf, 
df-program-meaning_wf, 
map_length, 
non_neg_length, 
nat_wf, 
ge_wf, 
not_wf, 
false_wf, 
int_seg_properties, 
select-map, 
tuple-type_wf, 
select-tuple_wf, 
permutation_wf, 
length-map, 
unit_wf, 
bl-all_wf, 
l_member_wf, 
bnot_wf, 
isl_wf, 
parallel-df-halt_wf, 
assert_wf, 
l_all_wf, 
strict-bag-function_wf, 
sq_stable_from_decidable
\mforall{}[A:\{A:\mBbbU{}'|  \mdownarrow{}A\}  ].  \mforall{}[dfps:DataflowProgram(A)  List].  \mforall{}[B:\{B:Type|  valueall-type(B)\}  ].
\mforall{}[F:k:\mBbbN{}||dfps||  {}\mrightarrow{}  bag(df-program-type(dfps[k]))  {}\mrightarrow{}  bag(B)].
    better-parallel-dataflow(
    ||dfps||;\mlambda{}k.map(\mlambda{}dfp.df-program-meaning(dfp);dfps)[k];
    F)
    =  df-program-meaning(parallel-df-program-case1(B;F;dfps)) 
    supposing  (F  (\mlambda{}i.\{\}))  =  \{\}
Date html generated:
2011_08_16-AM-09_39_18
Last ObjectModification:
2011_06_10-PM-03_35_11
Home
Index