{ [A:']. [dfps:DataflowProgram(A) List].
    [B:{B:Type| valueall-type(B)} ].
    [F:k:||dfps||  bag(df-program-type(dfps[k]))  bag(B)].
      (parallel-df-program(B;F;dfps)  DataflowProgram(A)) 
    supposing 0 < ||dfps|| }

{ Proof }



Definitions occuring in Statement :  parallel-df-program: parallel-df-program(B;F;dfps) df-program-type: df-program-type(dfp) dataflow-program: DataflowProgram(A) select: l[i] length: ||as|| int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] member: t  T less_than: a < b set: {x:A| B[x]}  function: x:A  B[x] list: type List natural_number: $n universe: Type bag: bag(T) valueall-type: valueall-type(T)
Definitions :  list_ind: list_ind def permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] l_member: (x  l) parallel-df-prog1: parallel-df-prog1(B;G;dfp) lambda: x.A[x] parallel-df-prog2: parallel-df-prog2(B;G;dfp1;dfp2) ifthenelse: if b then t else f fi  tl: tl(l) hd: hd(l) bfalse: ff limited-type: LimitedType btrue: tt le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) name_eq: name_eq(x;y) eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q lt_int: i <z j assert: b bnot: b unit: Unit union: left + right bool: fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ge: i  j  uiff: uiff(P;Q) subtype_rel: A r B top: Top product: x:A  B[x] grp_car: |g| nat: guard: {T} and: P  Q lelt: i  j < k void: Void implies: P  Q false: False not: A le: A  B real: rationals: subtype: S  T int: all: x:A. B[x] length: ||as|| natural_number: $n axiom: Ax parallel-df-program: parallel-df-program(B;F;dfps) equal: s = t prop: function: x:A  B[x] bag: bag(T) df-program-type: df-program-type(dfp) select: l[i] int_seg: {i..j} set: {x:A| B[x]}  valueall-type: valueall-type(T) less_than: a < b list: type List universe: Type uimplies: b supposing a isect: x:A. B[x] uall: [x:A]. B[x] so_lambda: x.t[x] member: t  T dataflow-program: DataflowProgram(A) minus: -n add: n + m subtract: n - m Repeat: Error :Repeat,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  Complete: Error :Complete,  Try: Error :Try,  proper-iseg: L1 < L2 iseg: l1  l2 gt: i > j map: map(f;as) sqequal: s ~ t tag-by: zT rev_implies: P  Q iff: P  Q record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 stream: stream(A) dataflow: dataflow(A;B) intensional-universe: IType fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) true: True squash: T fpf-cap: f(x)?z refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) so_lambda: x y.t[x; y] sq_type: SQType(T) IdLnk: IdLnk Id: Id append: as @ bs locl: locl(a) Knd: Knd pair: <a, b> pi2: snd(t) sq_stable: SqStable(P) so_apply: x[s] or: P  Q bag-separate: bag-separate(bs) pi1: fst(t) nil: [] atom: Atom$n atom: Atom rec: rec(x.A[x]) tunion: x:A.B[x] b-union: A  B filter: filter(P;l) bag-merge: bag-merge(as;bs) cons: [car / cdr] MaAuto: Error :MaAuto,  p-outcome: Outcome RepeatFor: Error :RepeatFor,  HypSubst: Error :HypSubst,  label: ...$L... t nat_plus: l_contains: A  B cmp-le: cmp-le(cmp;x;y) inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} exists: x:A. B[x] i-finite: i-finite(I) i-closed: i-closed(I) dstype: dstype(TypeNames; d; a) fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) MaName: MaName l_disjoint: l_disjoint(T;l1;l2) decidable: Dec(P) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) bag-member: bag-member(T;x;bs) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f)
Lemmas :  length_wf2 sq_stable__valueall-type decidable__equal_int length_nil bfalse_wf btrue_wf subtype_rel_self select-cons bnot_of_le_int pi2_wf bag-separate_wf pos_length2 bag-merge_wf l_member_wf list-subtype unit_wf union-valueall-type df-program-type-valueall-type int_seg_properties length_cons non_neg_length pi1_wf_top subtype_base_sq int_subtype_base quotient_wf equiv_rel_wf trans_wf sym_wf refl_wf true_wf squash_wf subtype_rel_bag intensional-universe_wf nat_properties nat_ind_tp select_wf dataflow-program_wf bag_wf member_wf int_seg_wf df-program-type_wf valueall-type_wf uall_wf length_wf1 guard_wf le_wf nat_wf comp_nat_ind_tp length_wf_nat top_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_lt_int assert_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int le_int_wf bnot_wf lt_int_wf ifthenelse_wf eq_int_wf tl_wf hd_wf parallel-df-prog2_wf parallel-df-prog1_wf ge_wf not_wf false_wf pos_length3 permutation_wf subtype_rel_wf assert_of_eq_int assert_of_bnot not_functionality_wrt_uiff

\mforall{}[A:\mBbbU{}'].  \mforall{}[dfps:DataflowProgram(A)  List].
    \mforall{}[B:\{B:Type|  valueall-type(B)\}  ].  \mforall{}[F:k:\mBbbN{}||dfps||  {}\mrightarrow{}  bag(df-program-type(dfps[k]))  {}\mrightarrow{}  bag(B)].
        (parallel-df-program(B;F;dfps)  \mmember{}  DataflowProgram(A)) 
    supposing  0  <  ||dfps||


Date html generated: 2011_08_16-AM-09_44_26
Last ObjectModification: 2011_06_18-AM-08_34_47

Home Index