Nuprl Lemma : hdf-with-state-pair-left-axiom

[L,S,G,init:Top]. ∀[m:ℕ].
  (fix((λmk-hdf,s. (inl a.cbva_seq(L[s;a]; λg.<mk-hdf <Ax, S[s;a;g]>G[s;a;g]>m))))) <Ax, init> fix((λmk-hdf,s. (\000Cinl a.cbva_seq(L[<Ax, s>;a]; λg.<mk-hdf S[<Ax, s>;a;g], G[<Ax, s>;a;g]>m))))) init)


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2;s3] so_apply: x[s1;s2] apply: a fix: fix(F) lambda: λx.A[x] pair: <a, b> inl: inl x sqequal: t axiom: Ax cbva_seq: cbva_seq(L; F; m)
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf nat_wf top_wf fun_exp0_lemma strictness-apply bottom_diverge has-value_wf_base decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel fun_exp_unroll_1
\mforall{}[L,S,G,init:Top].  \mforall{}[m:\mBbbN{}].
    (fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(L[s;a];  \mlambda{}g.<mk-hdf  <Ax,  S[s;a;g]>,  G[s;a;g]>  m)))))  <Ax,  init>\000C  \msim{}  fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(L[<Ax,  s>a];  \mlambda{}g.<mk-hdf  S[<Ax,  s>a;g],  G[<Ax,  s>a;g]>  m))))\000C)  init)



Date html generated: 2015_07_17-AM-08_16_51
Last ObjectModification: 2015_01_27-AM-11_51_33

Home Index