Nuprl Lemma : ap-action-1

[g:s-Group]. ∀[n:SeparationSpace]. ∀[a:sg-action(g;n)]. ∀[x:Point].  1(x) ≡ x


Proof




Definitions occuring in Statement :  ap-action: h(x) sg-action: sg-action(g;n) s-group: s-Group sg-id: 1 ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sg-action: sg-action(g;n) and: P ∧ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop: s-group: s-Group sq_stable: SqStable(P) implies:  Q ap-action: h(x) squash: T ss-eq: x ≡ y not: ¬A false: False guard: {T}
Lemmas referenced :  sq_stable__ss-eq ap-action_wf all_wf ss-point_wf ss-eq_wf sg-op_wf sg-id_wf ss-sep_wf sg-action_wf separation-space_wf s-group_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination hypothesisEquality productElimination hypothesis independent_pairFormation dependent_set_memberEquality productEquality because_Cache sqequalRule lambdaEquality applyEquality functionExtensionality independent_functionElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination isect_memberEquality voidElimination

Latex:
\mforall{}[g:s-Group].  \mforall{}[n:SeparationSpace].  \mforall{}[a:sg-action(g;n)].  \mforall{}[x:Point].    1(x)  \mequiv{}  x



Date html generated: 2017_10_02-PM-03_25_36
Last ObjectModification: 2017_07_03-PM-01_59_10

Theory : constructive!algebra


Home Index