Nuprl Lemma : inductive-set_wf

[R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ']. ∀[bdd:Bounded(x,a.R[x;a])].  (inductive-set(bdd) ∈ Set{i:l})


Proof




Definitions occuring in Statement :  inductive-set: inductive-set(bdd) bounded-relation: Bounded(x,a.R[x; a]) Set: Set{i:l} uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T inductive-set: inductive-set(bdd) bounded-relation: Bounded(x,a.R[x; a]) and: P ∧ Q spreadn: spread4 exists: x:A. B[x] all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s1;s2] prop: so_apply: x[s] implies:  Q iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2y.t[x; y]
Lemmas referenced :  least-closed-set_wf closure-set_wf Set_wf exists_wf all_wf iff_wf setmem_wf pi1_wf equal_wf bounded-relation_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality lambdaEquality because_Cache applyEquality functionExtensionality hypothesis instantiate cumulativity lambdaFormation dependent_pairEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}'].  \mforall{}[bdd:Bounded(x,a.R[x;a])].    (inductive-set(bdd)  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-10_10_18
Last ObjectModification: 2018_05_30-PM-06_35_10

Theory : constructive!set!theory


Home Index