Nuprl Lemma : inductive-set_wf
∀[R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ']. ∀[bdd:Bounded(x,a.R[x;a])]. (inductive-set(bdd) ∈ Set{i:l})
Proof
Definitions occuring in Statement :
inductive-set: inductive-set(bdd)
,
bounded-relation: Bounded(x,a.R[x; a])
,
Set: Set{i:l}
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
inductive-set: inductive-set(bdd)
,
bounded-relation: Bounded(x,a.R[x; a])
,
and: P ∧ Q
,
spreadn: spread4,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s1;s2]
,
prop: ℙ
,
so_apply: x[s]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x y.t[x; y]
Lemmas referenced :
least-closed-set_wf,
closure-set_wf,
Set_wf,
exists_wf,
all_wf,
iff_wf,
setmem_wf,
pi1_wf,
equal_wf,
bounded-relation_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
extract_by_obid,
isectElimination,
hypothesisEquality,
lambdaEquality,
because_Cache,
applyEquality,
functionExtensionality,
hypothesis,
instantiate,
cumulativity,
lambdaFormation,
dependent_pairEquality,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
axiomEquality,
isect_memberEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[R:Set\{i:l\} {}\mrightarrow{} Set\{i:l\} {}\mrightarrow{} \mBbbP{}']. \mforall{}[bdd:Bounded(x,a.R[x;a])]. (inductive-set(bdd) \mmember{} Set\{i:l\})
Date html generated:
2018_07_29-AM-10_10_18
Last ObjectModification:
2018_05_30-PM-06_35_10
Theory : constructive!set!theory
Home
Index