Nuprl Lemma : csm-ap-cubical-snd

[X,Delta:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[p:{X ⊢ _:Σ B}]. ∀[s:Delta ⟶ X].
  ((p.2)s (p)s.2 ∈ {Delta ⊢ _:((B)[p.1])s})


Proof




Definitions occuring in Statement :  cubical-snd: p.2 cubical-fst: p.1 cubical-sigma: Σ B csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-snd: p.2 pi2: snd(t) csm-ap-term: (t)s subtype_rel: A ⊆B cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cube-set-map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cubical-fst: p.1 csm-id-adjoin: [u] csm-ap-type: (AF)s pi1: fst(t) csm-ap: (s)x csm-adjoin: (s;u) cubical-set: CubicalSet functor-arrow: arrow(F) functor-ob: ob(F) type-cat: TypeCat cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) name-cat: NameCat cat-ob: cat-ob(C) cubical-sigma: Σ B I-cube: X(I) cubical-type-at: A(a) csm-id: 1(X) all: x:A. B[x] top: Top cat-id: cat-id(C) implies:  Q and: P ∧ Q cc-adjoin-cube: (v;u)
Lemmas referenced :  cubical-term-equal csm-ap-type_wf cube-context-adjoin_wf csm-id-adjoin_wf cubical-fst_wf csm-ap-term_wf cubical-snd_wf I-cube_wf list_wf coordinate_name_wf cube-set-map_wf cubical-term_wf cubical-sigma_wf cubical-type_wf cubical-set_wf ob_pair_lemma istype-void ident_trans_ap_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination functionExtensionality_alt sqequalRule applyEquality lambdaEquality_alt setElimination rename inhabitedIsType because_Cache universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies productElimination dependent_functionElimination voidElimination lambdaFormation_alt equalityIsType1 equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[X,Delta:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[p:\{X  \mvdash{}  \_:\mSigma{}  A  B\}].  \mforall{}[s:Delta  {}\mrightarrow{}  X].
    ((p.2)s  =  (p)s.2)



Date html generated: 2019_11_05-PM-00_26_51
Last ObjectModification: 2018_11_08-PM-00_51_47

Theory : cubical!sets


Home Index