Nuprl Lemma : csm-ap-cubical-snd
∀[X,Delta:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[p:{X ⊢ _:Σ A B}]. ∀[s:Delta ⟶ X].
((p.2)s = (p)s.2 ∈ {Delta ⊢ _:((B)[p.1])s})
Proof
Definitions occuring in Statement :
cubical-snd: p.2
,
cubical-fst: p.1
,
cubical-sigma: Σ A B
,
csm-id-adjoin: [u]
,
cube-context-adjoin: X.A
,
csm-ap-term: (t)s
,
cubical-term: {X ⊢ _:AF}
,
csm-ap-type: (AF)s
,
cubical-type: {X ⊢ _}
,
cube-set-map: A ⟶ B
,
cubical-set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
cubical-snd: p.2
,
pi2: snd(t)
,
csm-ap-term: (t)s
,
subtype_rel: A ⊆r B
,
cubical-term: {X ⊢ _:AF}
,
cubical-type: {X ⊢ _}
,
cube-set-map: A ⟶ B
,
nat-trans: nat-trans(C;D;F;G)
,
cubical-fst: p.1
,
csm-id-adjoin: [u]
,
csm-ap-type: (AF)s
,
pi1: fst(t)
,
csm-ap: (s)x
,
csm-adjoin: (s;u)
,
cubical-set: CubicalSet
,
functor-arrow: arrow(F)
,
functor-ob: ob(F)
,
type-cat: TypeCat
,
cat-comp: cat-comp(C)
,
cat-arrow: cat-arrow(C)
,
name-cat: NameCat
,
cat-ob: cat-ob(C)
,
cubical-sigma: Σ A B
,
I-cube: X(I)
,
cubical-type-at: A(a)
,
csm-id: 1(X)
,
all: ∀x:A. B[x]
,
top: Top
,
cat-id: cat-id(C)
,
implies: P
⇒ Q
,
and: P ∧ Q
,
cc-adjoin-cube: (v;u)
Lemmas referenced :
cubical-term-equal,
csm-ap-type_wf,
cube-context-adjoin_wf,
csm-id-adjoin_wf,
cubical-fst_wf,
csm-ap-term_wf,
cubical-snd_wf,
I-cube_wf,
list_wf,
coordinate_name_wf,
cube-set-map_wf,
cubical-term_wf,
cubical-sigma_wf,
cubical-type_wf,
cubical-set_wf,
ob_pair_lemma,
istype-void,
ident_trans_ap_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
independent_isectElimination,
functionExtensionality_alt,
sqequalRule,
applyEquality,
lambdaEquality_alt,
setElimination,
rename,
inhabitedIsType,
because_Cache,
universeIsType,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
productElimination,
dependent_functionElimination,
voidElimination,
lambdaFormation_alt,
equalityIsType1,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination
Latex:
\mforall{}[X,Delta:CubicalSet]. \mforall{}[A:\{X \mvdash{} \_\}]. \mforall{}[B:\{X.A \mvdash{} \_\}]. \mforall{}[p:\{X \mvdash{} \_:\mSigma{} A B\}]. \mforall{}[s:Delta {}\mrightarrow{} X].
((p.2)s = (p)s.2)
Date html generated:
2019_11_05-PM-00_26_51
Last ObjectModification:
2018_11_08-PM-00_51_47
Theory : cubical!sets
Home
Index