Nuprl Lemma : degeneracy-map_wf

[I,J:Cname List]. ∀[f:nameset(I) ⟶ nameset(J)].
  degeneracy-map(f) ∈ name-morph(I;J) supposing Inj(nameset(I);nameset(J);f)


Proof




Definitions occuring in Statement :  degeneracy-map: degeneracy-map(f) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname list: List inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a name-morph: name-morph(I;J) degeneracy-map: degeneracy-map(f) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] inject: Inj(A;B;f) sq_type: SQType(T) guard: {T}
Lemmas referenced :  nameset_subtype_extd-nameset nameset_wf equal_wf extd-nameset_wf assert_wf all_wf isname_wf inject_wf list_wf coordinate_name_wf subtype_base_sq extd-nameset_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality functionExtensionality applyEquality hypothesisEquality hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaFormation because_Cache lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality dependent_functionElimination independent_functionElimination instantiate cumulativity independent_isectElimination

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:nameset(I)  {}\mrightarrow{}  nameset(J)].
    degeneracy-map(f)  \mmember{}  name-morph(I;J)  supposing  Inj(nameset(I);nameset(J);f)



Date html generated: 2017_10_05-AM-10_06_34
Last ObjectModification: 2017_07_28-AM-11_16_24

Theory : cubical!sets


Home Index