Nuprl Lemma : named-path-equal-implies

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[z:Cname].
  ∀[p,q:named-path(X;A;a;b;I;alpha;z)].  q ∈ A(iota(z)(alpha)) supposing q ∈ named-path(X;A;a;b;I;alpha;z) 
  supposing ¬(z ∈ I)


Proof




Definitions occuring in Statement :  named-path: named-path(X;A;a;b;I;alpha;z) cubical-term: {X ⊢ _:AF} cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet iota: iota(x) coordinate_name: Cname l_member: (x ∈ l) cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} implies:  Q prop:
Lemmas referenced :  named-path-subtype equal_functionality_wrt_subtype_rel2 named-path_wf cubical-type-at_wf cons_wf coordinate_name_wf cube-set-restriction_wf iota_wf equal_wf not_wf l_member_wf I-cube_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction independent_isectElimination independent_functionElimination sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[z:Cname].
    \mforall{}[p,q:named-path(X;A;a;b;I;alpha;z)].    p  =  q  supposing  p  =  q  supposing  \mneg{}(z  \mmember{}  I)



Date html generated: 2016_06_16-PM-07_27_56
Last ObjectModification: 2015_12_28-PM-04_14_09

Theory : cubical!sets


Home Index