Nuprl Lemma : unit-cube-map-comp
∀I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K).
(unit-cube-map((f o g)) = unit-cube-map(f) o unit-cube-map(g) ∈ unit-cube(K) ⟶ unit-cube(I))
Proof
Definitions occuring in Statement :
unit-cube-map: unit-cube-map(f)
,
unit-cube: unit-cube(I)
,
csm-comp: G o F
,
cube-set-map: A ⟶ B
,
name-comp: (f o g)
,
name-morph: name-morph(I;J)
,
coordinate_name: Cname
,
list: T List
,
all: ∀x:A. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
cube-set-map: A ⟶ B
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
guard: {T}
,
uimplies: b supposing a
,
nat-trans: nat-trans(C;D;F;G)
,
unit-cube-map: unit-cube-map(f)
,
unit-cube: unit-cube(I)
,
csm-comp: G o F
,
functor-ob: ob(F)
,
type-cat: TypeCat
,
cat-arrow: cat-arrow(C)
,
name-cat: NameCat
,
cat-ob: cat-ob(C)
,
pi1: fst(t)
,
pi2: snd(t)
,
compose: f o g
,
trans-comp: t1 o t2
,
top: Top
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
squash: ↓T
,
prop: ℙ
,
true: True
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
cubical-set-is-functor,
nat-trans-equal,
name-cat_wf,
type-cat_wf,
unit-cube_wf,
subtype_rel_weakening,
cubical-set_wf,
cat-functor_wf,
csm-comp_wf,
unit-cube-map_wf,
name-comp_wf,
cube-set-map_wf,
name-morph_wf,
list_wf,
coordinate_name_wf,
cat_comp_tuple_lemma,
ob_pair_lemma,
ap_mk_nat_trans_lemma,
equal_wf,
squash_wf,
true_wf,
name-comp-assoc,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
equalitySymmetry,
thin,
instantiate,
sqequalHypSubstitution,
isectElimination,
hypothesis,
hypothesisEquality,
applyEquality,
independent_isectElimination,
sqequalRule,
lambdaEquality,
setElimination,
rename,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
functionExtensionality,
imageElimination,
equalityTransitivity,
universeEquality,
because_Cache,
natural_numberEquality,
imageMemberEquality,
baseClosed,
productElimination,
independent_functionElimination
Latex:
\mforall{}I,J,K:Cname List. \mforall{}f:name-morph(I;J). \mforall{}g:name-morph(J;K).
(unit-cube-map((f o g)) = unit-cube-map(f) o unit-cube-map(g))
Date html generated:
2017_10_05-AM-10_12_18
Last ObjectModification:
2017_07_28-AM-11_18_12
Theory : cubical!sets
Home
Index