Nuprl Lemma : unit-cube-map-comp

I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K).
  (unit-cube-map((f g)) unit-cube-map(f) unit-cube-map(g) ∈ unit-cube(K) ⟶ unit-cube(I))


Proof




Definitions occuring in Statement :  unit-cube-map: unit-cube-map(f) unit-cube: unit-cube(I) csm-comp: F cube-set-map: A ⟶ B name-comp: (f g) name-morph: name-morph(I;J) coordinate_name: Cname list: List all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] cube-set-map: A ⟶ B uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a nat-trans: nat-trans(C;D;F;G) unit-cube-map: unit-cube-map(f) unit-cube: unit-cube(I) csm-comp: F functor-ob: ob(F) type-cat: TypeCat cat-arrow: cat-arrow(C) name-cat: NameCat cat-ob: cat-ob(C) pi1: fst(t) pi2: snd(t) compose: g trans-comp: t1 t2 top: Top so_lambda: λ2x.t[x] so_apply: x[s] squash: T prop: true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-set-is-functor nat-trans-equal name-cat_wf type-cat_wf unit-cube_wf subtype_rel_weakening cubical-set_wf cat-functor_wf csm-comp_wf unit-cube-map_wf name-comp_wf cube-set-map_wf name-morph_wf list_wf coordinate_name_wf cat_comp_tuple_lemma ob_pair_lemma ap_mk_nat_trans_lemma equal_wf squash_wf true_wf name-comp-assoc iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid equalitySymmetry thin instantiate sqequalHypSubstitution isectElimination hypothesis hypothesisEquality applyEquality independent_isectElimination sqequalRule lambdaEquality setElimination rename dependent_functionElimination isect_memberEquality voidElimination voidEquality functionExtensionality imageElimination equalityTransitivity universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}I,J,K:Cname  List.  \mforall{}f:name-morph(I;J).  \mforall{}g:name-morph(J;K).
    (unit-cube-map((f  o  g))  =  unit-cube-map(f)  o  unit-cube-map(g))



Date html generated: 2017_10_05-AM-10_12_18
Last ObjectModification: 2017_07_28-AM-11_18_12

Theory : cubical!sets


Home Index