Nuprl Lemma : closed-cubical-universe-cumulativity

closed-cubical-term(cc𝕌) ⊆closed-cubical-term(cc𝕌')


Proof




Definitions occuring in Statement :  closed-cubical-universe: cc𝕌 closed-cubical-term: closed-cubical-term(T) subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T closed-cubical-universe: cc𝕌 closed-cubical-term: closed-cubical-term(T) pi1: fst(t) pi2: snd(t) uall: [x:A]. B[x] all: x:A. B[x] squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q names-hom: I ⟶ J I_cube: A(I) functor-ob: ob(F) formal-cube: formal-cube(I)
Lemmas referenced :  fibrant-type-cumulativity formal-cube_wf1 fset_wf nat_wf equal_wf squash_wf true_wf istype-universe fibrant-type_wf subtype_rel_self iff_weakening_equal names-hom_wf csm-fibrant-type_wf context-map_wf I_cube_wf closed-cubical-term_wf closed-cubical-universe_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution sqequalRule setElimination thin rename cut dependent_set_memberEquality_alt functionExtensionality applyEquality hypothesisEquality hypothesis introduction extract_by_obid isectElimination lambdaFormation_alt instantiate imageElimination equalityTransitivity equalitySymmetry universeIsType universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache inhabitedIsType functionIsType equalityIstype

Latex:
closed-cubical-term(cc\mBbbU{})  \msubseteq{}r  closed-cubical-term(cc\mBbbU{}')



Date html generated: 2020_05_20-PM-07_06_01
Last ObjectModification: 2020_04_25-AM-11_33_47

Theory : cubical!type!theory


Home Index