Nuprl Lemma : closed-cubical-universe_wf

cc𝕌 ∈ * ⊢_}


Proof




Definitions occuring in Statement :  closed-cubical-universe: cc𝕌 closed-cubical-type: * ⊢ _} member: t ∈ T
Definitions unfolded in proof :  closed-cubical-universe: cc𝕌 member: t ∈ T closed-cubical-type: * ⊢ _} uall: [x:A]. B[x] all: x:A. B[x] subtype_rel: A ⊆B names-hom: I ⟶ J I_cube: A(I) functor-ob: ob(F) pi1: fst(t) formal-cube: formal-cube(I) fibrant-type: FibrantType(X) and: P ∧ Q cand: c∧ B squash: T prop: uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat cat-comp: cat-comp(C) compose: g
Lemmas referenced :  fibrant-type_wf_formal-cube fset_wf nat_wf csm-fibrant-type_wf formal-cube_wf1 context-map_wf subtype_rel_self I_cube_wf names-hom_wf equal_wf squash_wf true_wf istype-universe csm-fibrant-type-id nh-id_wf context-map-1 iff_weakening_equal context-map-comp csm-fibrant-comp cube_set_map_wf nh-comp_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep dependent_set_memberEquality_alt dependent_pairEquality_alt lambdaEquality_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeIsType dependent_functionElimination applyEquality instantiate cumulativity universeEquality inhabitedIsType because_Cache functionIsType lambdaFormation_alt imageElimination equalityTransitivity equalitySymmetry independent_isectElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination independent_pairFormation hyp_replacement applyLambdaEquality productIsType equalityIstype

Latex:
cc\mBbbU{}  \mmember{}  \{  *  \mvdash{}'  \_\}



Date html generated: 2020_05_20-PM-07_05_46
Last ObjectModification: 2020_04_25-PM-00_12_01

Theory : cubical!type!theory


Home Index