Nuprl Lemma : csm-fibrant-type-id
∀[G:j⊢]. ∀[FT:FibrantType(G)]. ∀[tau:G j⟶ G].
  csm-fibrant-type(G;G;tau;FT) = FT ∈ FibrantType(G) supposing tau = 1(G) ∈ G j⟶ G
Proof
Definitions occuring in Statement : 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
fibrant-type: FibrantType(X)
, 
csm-id: 1(X)
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
fibrant-type: FibrantType(X)
, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
csm-ap-id-type, 
csm-composition-id, 
csm-ap-type_wf, 
csm-id_wf, 
subtype_rel-equal, 
composition-op_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
subtype_rel_self, 
iff_weakening_equal, 
fibrant-type_wf, 
csm-fibrant-type_wf, 
cube_set_map_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
thin, 
sqequalHypSubstitution, 
productElimination, 
sqequalRule, 
dependent_pairEquality_alt, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
equalityIstype, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[FT:FibrantType(G)].  \mforall{}[tau:G  j{}\mrightarrow{}  G].
    csm-fibrant-type(G;G;tau;FT)  =  FT  supposing  tau  =  1(G)
Date html generated:
2020_05_20-PM-05_20_38
Last ObjectModification:
2020_04_12-AM-08_43_18
Theory : cubical!type!theory
Home
Index