Nuprl Lemma : csm-fibrant-type-id

[G:j⊢]. ∀[FT:FibrantType(G)]. ∀[tau:G j⟶ G].
  csm-fibrant-type(G;G;tau;FT) FT ∈ FibrantType(G) supposing tau 1(G) ∈ j⟶ G


Proof




Definitions occuring in Statement :  csm-fibrant-type: csm-fibrant-type(G;H;s;FT) fibrant-type: FibrantType(X) csm-id: 1(X) cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fibrant-type: FibrantType(X) csm-fibrant-type: csm-fibrant-type(G;H;s;FT) subtype_rel: A ⊆B squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  csm-ap-id-type csm-composition-id csm-ap-type_wf csm-id_wf subtype_rel-equal composition-op_wf equal_wf squash_wf true_wf istype-universe cubical_set_cumulativity-i-j cubical-type-cumulativity2 subtype_rel_self iff_weakening_equal fibrant-type_wf csm-fibrant-type_wf cube_set_map_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis thin sqequalHypSubstitution productElimination sqequalRule dependent_pairEquality_alt extract_by_obid isectElimination hypothesisEquality applyEquality instantiate because_Cache independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination hyp_replacement applyLambdaEquality equalityIstype inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[FT:FibrantType(G)].  \mforall{}[tau:G  j{}\mrightarrow{}  G].
    csm-fibrant-type(G;G;tau;FT)  =  FT  supposing  tau  =  1(G)



Date html generated: 2020_05_20-PM-05_20_38
Last ObjectModification: 2020_04_12-AM-08_43_18

Theory : cubical!type!theory


Home Index