Nuprl Lemma : csm-composition-id

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].  ((comp)1(Gamma) comp ∈ Gamma ⊢ CompOp(A))


Proof




Definitions occuring in Statement :  csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} csm-id: 1(X) cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-op: Gamma ⊢ CompOp(A) subtype_rel: A ⊆B prop: uimplies: supposing a all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] csm-composition: (comp)sigma csm-ap: (s)x csm-id: 1(X)
Lemmas referenced :  composition-uniformity_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j composition-op_wf cubical-type_wf cubical_set_wf cubical-path-0_wf cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesis universeIsType instantiate extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionExtensionality independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setEquality intEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].    ((comp)1(Gamma)  =  comp)



Date html generated: 2020_05_20-PM-03_51_49
Last ObjectModification: 2020_04_09-PM-01_11_49

Theory : cubical!type!theory


Home Index