Nuprl Lemma : csm-path-type-id-adjoin

[X:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[a,b:{X.B ⊢ _:(A)p}]. ∀[u:{X ⊢ _:B}].
  (((Path_(A)p b))[u] (X ⊢ Path_A (a)[u] (b)[u]) ∈ {X ⊢ _})


Proof




Definitions occuring in Statement :  path-type: (Path_A b) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: all: x:A. B[x] subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe cubical-type_wf csm-path-type cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-id-adjoin_wf csm-ap-type_wf cc-fst_wf path-type_wf csm-ap-term_wf subtype_rel_self iff_weakening_equal cubical-term_wf cubical_set_wf csm-ap-type-fst-id-adjoin
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin instantiate lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType universeEquality dependent_functionElimination sqequalRule because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination inhabitedIsType Error :memTop,  isect_memberEquality_alt axiomEquality isectIsTypeImplies

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X.B  \mvdash{}  \_:(A)p\}].  \mforall{}[u:\{X  \mvdash{}  \_:B\}].
    (((Path\_(A)p  a  b))[u]  =  (X  \mvdash{}  Path\_A  (a)[u]  (b)[u]))



Date html generated: 2020_05_20-PM-03_15_32
Last ObjectModification: 2020_04_06-PM-05_58_06

Theory : cubical!type!theory


Home Index