Nuprl Lemma : ctt-is-term_wf
∀[t:term(CttOp)]. (ctt-is-term(t) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
ctt-is-term: ctt-is-term(t)
, 
ctt-op: CttOp
, 
term: term(opr)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ctt-is-term: ctt-is-term(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
isvarterm_wf, 
ctt-op_wf, 
eqtt_to_assert, 
btrue_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
eq_atom_wf, 
ctt-op-sort_wf, 
term-opr_wf, 
term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
tokenEquality, 
universeIsType
Latex:
\mforall{}[t:term(CttOp)].  (ctt-is-term(t)  \mmember{}  \mBbbB{})
Date html generated:
2020_05_21-AM-10_34_51
Last ObjectModification:
2020_02_12-AM-11_21_03
Theory : cubical!type!theory
Home
Index