Nuprl Lemma : ctt-is-term_wf

[t:term(CttOp)]. (ctt-is-term(t) ∈ 𝔹)


Proof




Definitions occuring in Statement :  ctt-is-term: ctt-is-term(t) ctt-op: CttOp term: term(opr) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ctt-is-term: ctt-is-term(t) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bor: p ∨bq ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtype_rel: A ⊆B
Lemmas referenced :  isvarterm_wf ctt-op_wf eqtt_to_assert btrue_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot eq_atom_wf ctt-op-sort_wf term-opr_wf term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesis hypothesisEquality inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination cumulativity independent_functionElimination because_Cache voidElimination applyEquality lambdaEquality_alt setElimination rename tokenEquality universeIsType

Latex:
\mforall{}[t:term(CttOp)].  (ctt-is-term(t)  \mmember{}  \mBbbB{})



Date html generated: 2020_05_21-AM-10_34_51
Last ObjectModification: 2020_02_12-AM-11_21_03

Theory : cubical!type!theory


Home Index