Nuprl Lemma : ctt-level-comp_wf
∀[X:⊢''']. ∀[lvl:ℕ4]. ∀[T:{X ⊢lvl _}]. (Comp(X;lvl;T) ∈ 𝕌{i'''''})
Proof
Definitions occuring in Statement :
ctt-level-comp: Comp(X;lvl;T)
,
ctt-level-type: {X ⊢lvl _}
,
cubical_set: CubicalSet
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
implies: P
⇒ Q
,
guard: {T}
,
ctt-level-comp: Comp(X;lvl;T)
,
ctt-level-type: {X ⊢lvl _}
,
eq_int: (i =z j)
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
prop: ℙ
Lemmas referenced :
decidable__equal_int,
subtype_base_sq,
int_subtype_base,
int_seg_properties,
composition-structure_wf,
cubical-type_wf,
int_seg_subtype_special,
int_seg_cases,
full-omega-unsat,
intformand_wf,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
int_seg_wf,
cubical_set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
setElimination,
rename,
hypothesisEquality,
hypothesis,
productElimination,
unionElimination,
instantiate,
isectElimination,
cumulativity,
intEquality,
independent_isectElimination,
because_Cache,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
sqequalRule,
axiomEquality,
universeIsType,
hypothesis_subsumption,
approximateComputation,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
Error :memTop,
independent_pairFormation,
voidElimination,
isect_memberEquality_alt,
isectIsTypeImplies,
inhabitedIsType
Latex:
\mforall{}[X:\mvdash{}''']. \mforall{}[lvl:\mBbbN{}4]. \mforall{}[T:\{X \mvdash{}lvl \_\}]. (Comp(X;lvl;T) \mmember{} \mBbbU{}\{i'''''\})
Date html generated:
2020_05_20-PM-07_46_59
Last ObjectModification:
2020_05_06-PM-01_16_30
Theory : cubical!type!theory
Home
Index