Nuprl Lemma : ctt-opid-arity_wf
∀[t:Atom]. (ctt-opid-arity(t) ∈ (ℕ × ℕ) List)
Proof
Definitions occuring in Statement : 
ctt-opid-arity: ctt-opid-arity(t)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
atom: Atom
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ctt-opid-arity: ctt-opid-arity(t)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
istype-atom, 
eq_atom_wf, 
equal-wf-base, 
bool_wf, 
atom_subtype_base, 
assert_wf, 
cons_wf, 
nat_wf, 
istype-void, 
istype-le, 
nil_wf, 
bnot_wf, 
not_wf, 
istype-assert, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_atom, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
tokenEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
atomEquality, 
because_Cache, 
productEquality, 
independent_pairEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation_alt, 
voidElimination, 
equalityIstype, 
inhabitedIsType, 
sqequalBase, 
equalitySymmetry, 
functionIsType, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
dependent_functionElimination
Latex:
\mforall{}[t:Atom].  (ctt-opid-arity(t)  \mmember{}  (\mBbbN{}  \mtimes{}  \mBbbN{})  List)
Date html generated:
2020_05_20-PM-08_18_48
Last ObjectModification:
2020_02_25-PM-01_42_48
Theory : cubical!type!theory
Home
Index