Nuprl Lemma : ctt-opid-arity_wf

[t:Atom]. (ctt-opid-arity(t) ∈ (ℕ × ℕList)


Proof




Definitions occuring in Statement :  ctt-opid-arity: ctt-opid-arity(t) list: List nat: uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ctt-opid-arity: ctt-opid-arity(t) subtype_rel: A ⊆B nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  istype-atom eq_atom_wf equal-wf-base bool_wf atom_subtype_base assert_wf cons_wf nat_wf istype-void istype-le nil_wf bnot_wf not_wf istype-assert uiff_transitivity eqtt_to_assert assert_of_eq_atom iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution hypothesis introduction extract_by_obid isectElimination thin hypothesisEquality tokenEquality sqequalRule baseApply closedConclusion baseClosed applyEquality atomEquality because_Cache productEquality independent_pairEquality dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation lambdaFormation_alt voidElimination equalityIstype inhabitedIsType sqequalBase equalitySymmetry functionIsType unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination equalityTransitivity dependent_functionElimination

Latex:
\mforall{}[t:Atom].  (ctt-opid-arity(t)  \mmember{}  (\mBbbN{}  \mtimes{}  \mBbbN{})  List)



Date html generated: 2020_05_20-PM-08_18_48
Last ObjectModification: 2020_02_25-PM-01_42_48

Theory : cubical!type!theory


Home Index