Nuprl Lemma : ctt-term-meaning-subtype2

[X:⊢''']. (cttTerm(X) ⊆ctt-type-meaning1{i:l}(X))


Proof




Definitions occuring in Statement :  ctt-type-meaning1: ctt-type-meaning1{i:l}(X) ctt-term-meaning: cttTerm(X) cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T ctt-term-meaning: cttTerm(X) all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} ctt-type-meaning1: ctt-type-meaning1{i:l}(X) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False less_than': less_than'(a;b)
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than ctt-level-type_wf int_seg_subtype_nat istype-false istype-top int_seg_subtype_special int_seg_cases intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma ctt-term-meaning_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination setElimination rename hypothesisEquality hypothesis unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality dependent_pairEquality_alt dependent_set_memberEquality_alt independent_pairFormation approximateComputation dependent_pairFormation_alt Error :memTop,  sqequalRule universeIsType voidElimination productIsType independent_pairEquality applyEquality lambdaFormation_alt hypothesis_subsumption int_eqEquality

Latex:
\mforall{}[X:\mvdash{}'''].  (cttTerm(X)  \msubseteq{}r  ctt-type-meaning1\{i:l\}(X))



Date html generated: 2020_05_20-PM-07_59_41
Last ObjectModification: 2020_05_05-AM-11_08_43

Theory : cubical!type!theory


Home Index