Nuprl Lemma : ctt-level-type_wf

[X:⊢''']. ∀[lvl:ℕ].  (X ⊢lvl  ∈ 𝕌{i''''})


Proof




Definitions occuring in Statement :  ctt-level-type: {X ⊢lvl _} cubical_set: CubicalSet nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ctt-level-type: {X ⊢lvl _} nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False
Lemmas referenced :  eq_int_wf uiff_transitivity equal-wf-base bool_wf set_subtype_base le_wf istype-int int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int cubical-type_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert istype-void istype-nat cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality inhabitedIsType lambdaFormation_alt unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality intEquality lambdaEquality_alt independent_isectElimination because_Cache independent_functionElimination productElimination instantiate independent_pairFormation equalityIstype sqequalBase equalitySymmetry functionIsType voidElimination equalityTransitivity dependent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[lvl:\mBbbN{}].    (X  \mvdash{}lvl    \mmember{}  \mBbbU{}\{i''''\})



Date html generated: 2020_05_20-PM-07_45_24
Last ObjectModification: 2020_05_04-AM-09_53_54

Theory : cubical!type!theory


Home Index