Nuprl Lemma : dM-join-inc-opp

[i:ℕ]. (<i> ∨ <1-i> {{inr },{inl i}})


Proof




Definitions occuring in Statement :  dM_opp: <1-x> dM_inc: <x> dM: dM(I) lattice-join: a ∨ b fset-pair: {a,b} fset-singleton: {x} nat: uall: [x:A]. B[x] inr: inr  inl: inl x sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-join: a ∨ b record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt fset-ac-lub: fset-ac-lub(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind fset-union: x ⋃ y l-union: as ⋃ bs dM_opp: <1-x> dmopp: <1-i> free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b] insert: insert(a;L) eval_list: eval_list(t) nil: [] it: dM_inc: <x> dminc: <i> deq-member: x ∈b L bor: p ∨bq deq-fset: deq-fset(eq) isl: isl(x) decidable__equal_fset decidable_functionality iff_preserves_decidability decidable__and2 decidable__f-subset decidable__all_fset decidable__assert fset-null: fset-null(s) null: null(as) bnot: ¬bb decidable__fset-member deq-fset-member: a ∈b s mk_deq: mk_deq(p) union-deq: union-deq(A;B;a;b) sumdeq: sumdeq(a;b) fset-minimal: fset-minimal(x,y.less[x; y];s;a) f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys) band: p ∧b q deq-f-subset: deq-f-subset(eq) names-deq: NamesDeq int-deq: IntDeq eq_int: (i =z j) fset-pair: {a,b} nat: iff_weakening_uiff fset-all-iff decidable__and
Lemmas referenced :  nat_wf decidable__equal_fset decidable_functionality iff_preserves_decidability decidable__and2 decidable__f-subset decidable__all_fset decidable__assert decidable__fset-member iff_weakening_uiff fset-all-iff decidable__and
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule int_eqReduceTrueSq sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis because_Cache sqequalAxiom extract_by_obid

Latex:
\mforall{}[i:\mBbbN{}].  (<i>  \mvee{}  ə-i>  \msim{}  \{\{inr  i  \},\{inl  i\}\})



Date html generated: 2018_05_23-AM-08_28_47
Last ObjectModification: 2018_05_20-PM-05_39_01

Theory : cubical!type!theory


Home Index