Nuprl Lemma : equiv-bijection-equiv
∀[A,B:Type]. ∀[e:A ~ B].
((((λe.<equiv-bijection(e), equiv-bijection-is(e)>) o (λe.bijection-equiv(();A;B;fst(e);bij_inv(snd(e))))) e)
= e
∈ A ~ B)
Proof
Definitions occuring in Statement :
equiv-bijection-is: equiv-bijection-is(e)
,
equiv-bijection: equiv-bijection(e)
,
bijection-equiv: bijection-equiv(X;A;B;f;g)
,
trivial-cube-set: ()
,
equipollent: A ~ B
,
bij_inv: bij_inv(bi)
,
compose: f o g
,
uall: ∀[x:A]. B[x]
,
pi1: fst(t)
,
pi2: snd(t)
,
apply: f a
,
lambda: λx.A[x]
,
pair: <a, b>
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
bijection-equiv: bijection-equiv(X;A;B;f;g)
,
equiv-bijection: equiv-bijection(e)
,
compose: f o g
,
equiv-witness: equiv-witness(f;cntr)
,
equiv-fun: equiv-fun(f)
,
discrete-fun: discrete-fun(f)
,
cubical-lam: cubical-lam(X;b)
,
cubical-lambda: (λb)
,
cubical-pair: cubical-pair(u;v)
,
cubical-fst: p.1
,
cubical-term-at: u(a)
,
pi1: fst(t)
,
trivial-cube-set: ()
,
cc-adjoin-cube: (v;u)
,
equiv-bijection-is: equiv-bijection-is(e)
,
pi2: snd(t)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
top: Top
,
equiv-contr: equiv-contr(f;a)
,
fiber-point: fiber-point(t;c)
,
contr-witness: contr-witness(X;c;p)
,
cubical-snd: p.2
,
cubical-app: app(w; u)
,
discrete-cubical-term: discr(t)
,
uall: ∀[x:A]. B[x]
,
equipollent: A ~ B
,
exists: ∃x:A. B[x]
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
biject: Bij(A;B;f)
,
surject: Surj(A;B;f)
,
inject: Inj(A;B;f)
,
bij_inv: bij_inv(bi)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
cube_set_restriction_pair_lemma,
equipollent_wf,
equal_wf,
squash_wf,
true_wf,
eta_conv,
iff_weakening_equal,
biject_wf,
exists_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
isect_memberFormation,
isectElimination,
cumulativity,
hypothesisEquality,
axiomEquality,
because_Cache,
universeEquality,
productElimination,
dependent_pairEquality,
applyEquality,
lambdaEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_isectElimination,
independent_functionElimination,
independent_pairEquality,
functionExtensionality,
productEquality,
functionEquality,
lambdaFormation,
equalityElimination
Latex:
\mforall{}[A,B:Type]. \mforall{}[e:A \msim{} B].
((((\mlambda{}e.<equiv-bijection(e), equiv-bijection-is(e)>)
o (\mlambda{}e.bijection-equiv(();A;B;fst(e);bij\_inv(snd(e)))))
e)
= e)
Date html generated:
2017_10_05-AM-02_18_12
Last ObjectModification:
2017_03_02-PM-11_26_24
Theory : cubical!type!theory
Home
Index