Nuprl Lemma : names-list_wf
∀[I:fset(ℕ)]. ∀[s:fset(names(I))].  (names-list(s) ∈ {L:names(I) List| L = s ∈ fset(names(I))} )
Proof
Definitions occuring in Statement : 
names-list: names-list(s)
, 
names: names(I)
, 
fset: fset(T)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
names-list: names-list(s)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
pi1: fst(t)
Lemmas referenced : 
fset-names-to-list, 
fset_wf, 
nat_wf, 
names_wf, 
exists_wf, 
list_wf, 
equal_wf, 
list_subtype_fset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
lambdaEquality, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
sqequalHypSubstitution, 
functionEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
productElimination, 
dependent_set_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[s:fset(names(I))].    (names-list(s)  \mmember{}  \{L:names(I)  List|  L  =  s\}  )
Date html generated:
2017_10_05-AM-00_59_14
Last ObjectModification:
2017_03_02-PM-10_18_12
Theory : cubical!type!theory
Home
Index