Nuprl Lemma : fset-names-to-list

[I:fset(ℕ)]. ∀s:fset(names(I)). ∃L:names(I) List. (L s ∈ fset(names(I)))


Proof




Definitions occuring in Statement :  names: names(I) fset: fset(T) list: List nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T names: names(I) nat: implies:  Q linorder: Linorder(T;x,y.R[x; y]) and: P ∧ Q order: Order(T;x,y.R[x; y]) refl: Refl(T;x,y.E[x; y]) ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: cand: c∧ B trans: Trans(T;x,y.E[x; y]) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T le: A ≤ B anti_sym: AntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) fset: fset(T) quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] fset-member: a ∈ s iff: ⇐⇒ Q rev_implies:  Q set-equal: set-equal(T;x;y) equiv_rel: EquivRel(T;x,y.E[x; y]) guard: {T} sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  fset-to-list names_wf names-deq_wf le_wf decidable__le fset_wf nat_wf nat_properties satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf sq_stable_from_decidable fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 strong-subtype-self decidable__fset-member intformand_wf int_formula_prop_and_lemma less_than'_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma itermConstant_wf int_term_value_constant_lemma decidable__or intformor_wf int_formula_prop_or_lemma equal_wf list_subtype_fset quotient-member-eq list_wf set-equal_wf set-equal-equiv equal-wf-base assert-deq-member l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination lambdaEquality setElimination rename independent_functionElimination sqequalRule because_Cache independent_pairFormation unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality imageMemberEquality baseClosed imageElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality pointwiseFunctionalityForEquality pertypeElimination productEquality allFunctionality promote_hyp

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}s:fset(names(I)).  \mexists{}L:names(I)  List.  (L  =  s)



Date html generated: 2017_02_21-AM-10_30_49
Last ObjectModification: 2017_02_02-PM-06_35_41

Theory : cubical!type!theory


Home Index