Nuprl Lemma : fset-names-to-list
∀[I:fset(ℕ)]. ∀s:fset(names(I)). ∃L:names(I) List. (L = s ∈ fset(names(I)))
Proof
Definitions occuring in Statement : 
names: names(I)
, 
fset: fset(T)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
names: names(I)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
linorder: Linorder(T;x,y.R[x; y])
, 
and: P ∧ Q
, 
order: Order(T;x,y.R[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
cand: A c∧ B
, 
trans: Trans(T;x,y.E[x; y])
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
le: A ≤ B
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
connex: Connex(T;x,y.R[x; y])
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
fset-member: a ∈ s
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
set-equal: set-equal(T;x;y)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
guard: {T}
, 
sym: Sym(T;x,y.E[x; y])
Lemmas referenced : 
fset-to-list, 
names_wf, 
names-deq_wf, 
le_wf, 
decidable__le, 
fset_wf, 
nat_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
sq_stable_from_decidable, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
strong-subtype-self, 
decidable__fset-member, 
intformand_wf, 
int_formula_prop_and_lemma, 
less_than'_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
itermConstant_wf, 
int_term_value_constant_lemma, 
decidable__or, 
intformor_wf, 
int_formula_prop_or_lemma, 
equal_wf, 
list_subtype_fset, 
quotient-member-eq, 
list_wf, 
set-equal_wf, 
set-equal-equiv, 
equal-wf-base, 
assert-deq-member, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
lambdaEquality, 
setElimination, 
rename, 
independent_functionElimination, 
sqequalRule, 
because_Cache, 
independent_pairFormation, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productEquality, 
allFunctionality, 
promote_hyp
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}s:fset(names(I)).  \mexists{}L:names(I)  List.  (L  =  s)
Date html generated:
2017_02_21-AM-10_30_49
Last ObjectModification:
2017_02_02-PM-06_35_41
Theory : cubical!type!theory
Home
Index