Nuprl Lemma : fset-names-to-list
∀[I:fset(ℕ)]. ∀s:fset(names(I)). ∃L:names(I) List. (L = s ∈ fset(names(I)))
Proof
Definitions occuring in Statement : 
names: names(I), 
fset: fset(T), 
list: T List, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
names: names(I), 
nat: ℕ, 
implies: P ⇒ Q, 
linorder: Linorder(T;x,y.R[x; y]), 
and: P ∧ Q, 
order: Order(T;x,y.R[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
cand: A c∧ B, 
trans: Trans(T;x,y.E[x; y]), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_stable: SqStable(P), 
squash: ↓T, 
le: A ≤ B, 
anti_sym: AntiSym(T;x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
fset-member: a ∈ s, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
set-equal: set-equal(T;x;y), 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
guard: {T}, 
sym: Sym(T;x,y.E[x; y])
Lemmas referenced : 
fset-to-list, 
names_wf, 
names-deq_wf, 
le_wf, 
decidable__le, 
fset_wf, 
nat_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
sq_stable_from_decidable, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
strong-subtype-self, 
decidable__fset-member, 
intformand_wf, 
int_formula_prop_and_lemma, 
less_than'_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
itermConstant_wf, 
int_term_value_constant_lemma, 
decidable__or, 
intformor_wf, 
int_formula_prop_or_lemma, 
equal_wf, 
list_subtype_fset, 
quotient-member-eq, 
list_wf, 
set-equal_wf, 
set-equal-equiv, 
equal-wf-base, 
assert-deq-member, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
lambdaEquality, 
setElimination, 
rename, 
independent_functionElimination, 
sqequalRule, 
because_Cache, 
independent_pairFormation, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productEquality, 
allFunctionality, 
promote_hyp
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}s:fset(names(I)).  \mexists{}L:names(I)  List.  (L  =  s)
Date html generated:
2017_02_21-AM-10_30_49
Last ObjectModification:
2017_02_02-PM-06_35_41
Theory : cubical!type!theory
Home
Index