Nuprl Lemma : nc-1-lemma2

j:ℕ((j1) {{}})


Proof




Definitions occuring in Statement :  nc-1: (i1) empty-fset: {} fset-singleton: {x} nat: all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] nc-1: (i1) member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) prop:
Lemmas referenced :  eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties full-omega-unsat intformnot_wf intformeq_wf itermVar_wf istype-int int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination natural_numberEquality approximateComputation lambdaEquality_alt int_eqEquality Error :memTop,  universeIsType

Latex:
\mforall{}j:\mBbbN{}.  ((j1)  j  \msim{}  \{\{\}\})



Date html generated: 2020_05_20-PM-01_36_21
Last ObjectModification: 2020_01_04-AM-11_38_07

Theory : cubical!type!theory


Home Index