Nuprl Lemma : nc-r'-to-e'2

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{i:ℕ| ¬i ∈ J} ].  (f,i=1-j r_i ⋅ f,i=j ∈ J+j ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-r': g,i=1-j nc-e': g,i=j nc-r: r_i add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] nat: so_apply: x[s]
Lemmas referenced :  equal_wf squash_wf true_wf names-hom_wf add-name_wf nc-r'_wf nc-e'-r iff_weakening_equal nc-r'-to-e' set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality setElimination rename natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache intEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J\}  ].
    (f,i=1-j  =  r\_i  \mcdot{}  f,i=j)



Date html generated: 2017_10_05-AM-01_06_22
Last ObjectModification: 2017_07_28-AM-09_27_53

Theory : cubical!type!theory


Home Index