Nuprl Lemma : term-to-path-equal
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u,v:{X ⊢ _:A}].
  ∀a:{X.𝕀 ⊢ _:(A)p}
    (∀[b:{X.𝕀 ⊢ _:(A)p}]. X ⊢ <>(a) = X ⊢ <>(b) ∈ {X ⊢ _:(Path_A u v)} supposing a = b ∈ {X.𝕀 ⊢ _:(A)p}) supposing 
       (X ⊢ (a)[0(𝕀)]=u:A and 
       X ⊢ (a)[1(𝕀)]=v:A)
Proof
Definitions occuring in Statement : 
term-to-path: <>(a)
, 
path-type: (Path_A a b)
, 
same-cubical-term: X ⊢ u=v:A
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
same-cubical-term: X ⊢ u=v:A
Lemmas referenced : 
term-to-path-wf, 
same-cubical-term_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-id-adjoin_wf-interval-0, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
csm-id-adjoin_wf-interval-1, 
cubical-term_wf, 
cubical-type_wf, 
cubical_set_wf, 
term-to-path_wf, 
squash_wf, 
true_wf, 
path-type_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
applyEquality, 
because_Cache, 
Error :memTop, 
equalityIstype, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u,v:\{X  \mvdash{}  \_:A\}].
    \mforall{}a:\{X.\mBbbI{}  \mvdash{}  \_:(A)p\}
        (\mforall{}[b:\{X.\mBbbI{}  \mvdash{}  \_:(A)p\}].  X  \mvdash{}  <>(a)  =  X  \mvdash{}  <>(b)  supposing  a  =  b)  supposing 
              (X  \mvdash{}  (a)[0(\mBbbI{})]=u:A  and 
              X  \mvdash{}  (a)[1(\mBbbI{})]=v:A)
Date html generated:
2020_05_20-PM-03_19_50
Last ObjectModification:
2020_04_07-PM-00_59_31
Theory : cubical!type!theory
Home
Index