Nuprl Lemma : term-to-path-equal

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u,v:{X ⊢ _:A}].
  ∀a:{X.𝕀 ⊢ _:(A)p}
    (∀[b:{X.𝕀 ⊢ _:(A)p}]. X ⊢ <>(a) X ⊢ <>(b) ∈ {X ⊢ _:(Path_A v)} supposing b ∈ {X.𝕀 ⊢ _:(A)p}) supposing 
       (X ⊢ (a)[0(𝕀)]=u:A and 
       X ⊢ (a)[1(𝕀)]=v:A)


Proof




Definitions occuring in Statement :  term-to-path: <>(a) path-type: (Path_A b) same-cubical-term: X ⊢ u=v:A interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B squash: T prop: true: True same-cubical-term: X ⊢ u=v:A
Lemmas referenced :  term-to-path-wf same-cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-term_wf cube-context-adjoin_wf interval-type_wf csm-ap-type_wf cc-fst_wf csm-id-adjoin_wf-interval-0 subset-cubical-term2 sub_cubical_set_self csm_id_adjoin_fst_type_lemma csm-ap-id-type csm-id-adjoin_wf-interval-1 cubical-term_wf cubical-type_wf cubical_set_wf term-to-path_wf squash_wf true_wf path-type_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt dependent_functionElimination independent_isectElimination sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType universeIsType instantiate applyEquality because_Cache Error :memTop,  equalityIstype lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u,v:\{X  \mvdash{}  \_:A\}].
    \mforall{}a:\{X.\mBbbI{}  \mvdash{}  \_:(A)p\}
        (\mforall{}[b:\{X.\mBbbI{}  \mvdash{}  \_:(A)p\}].  X  \mvdash{}  <>(a)  =  X  \mvdash{}  <>(b)  supposing  a  =  b)  supposing 
              (X  \mvdash{}  (a)[0(\mBbbI{})]=u:A  and 
              X  \mvdash{}  (a)[1(\mBbbI{})]=v:A)



Date html generated: 2020_05_20-PM-03_19_50
Last ObjectModification: 2020_04_07-PM-00_59_31

Theory : cubical!type!theory


Home Index