Nuprl Lemma : eu-between-eq-middle
∀e:EuclideanPlane. ∀a,b,c,d:Point.  ((¬(a = d ∈ Point)) 
⇒ a_b_d 
⇒ a_c_d 
⇒ (¬((¬b_c_d) ∧ (¬c_b_d))))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
not_wf, 
eu-between-eq_wf, 
equal_wf, 
eu-point_wf, 
euclidean-plane_wf, 
eu-extend-exists, 
eu-between-eq-same-side, 
eu-between-eq-symmetry, 
eu-between-eq-inner-trans, 
eu-congruent_wf, 
eu-congruence-identity-sym, 
false_wf, 
eu-between-eq-exchange4, 
eu-between-eq-exchange3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
productElimination, 
independent_isectElimination, 
hyp_replacement, 
Error :applyLambdaEquality, 
sqequalRule, 
equalityTransitivity, 
equalityEquality, 
universeEquality, 
independent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    ((\mneg{}(a  =  d))  {}\mRightarrow{}  a\_b\_d  {}\mRightarrow{}  a\_c\_d  {}\mRightarrow{}  (\mneg{}((\mneg{}b\_c\_d)  \mwedge{}  (\mneg{}c\_b\_d))))
Date html generated:
2016_10_26-AM-07_45_39
Last ObjectModification:
2016_07_12-AM-08_11_56
Theory : euclidean!geometry
Home
Index