Nuprl Lemma : eu-between-eq-middle

e:EuclideanPlane. ∀a,b,c,d:Point.  ((¬(a d ∈ Point))  a_b_d  a_c_d  ((¬b_c_d) ∧ c_b_d))))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: and: P ∧ Q uall: [x:A]. B[x] euclidean-plane: EuclideanPlane exists: x:A. B[x] uimplies: supposing a
Lemmas referenced :  not_wf eu-between-eq_wf equal_wf eu-point_wf euclidean-plane_wf eu-extend-exists eu-between-eq-same-side eu-between-eq-symmetry eu-between-eq-inner-trans eu-congruent_wf eu-congruence-identity-sym false_wf eu-between-eq-exchange4 eu-between-eq-exchange3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination productEquality introduction extract_by_obid isectElimination setElimination rename hypothesisEquality because_Cache dependent_functionElimination equalitySymmetry dependent_set_memberEquality productElimination independent_isectElimination hyp_replacement Error :applyLambdaEquality,  sqequalRule equalityTransitivity equalityEquality universeEquality independent_pairFormation

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    ((\mneg{}(a  =  d))  {}\mRightarrow{}  a\_b\_d  {}\mRightarrow{}  a\_c\_d  {}\mRightarrow{}  (\mneg{}((\mneg{}b\_c\_d)  \mwedge{}  (\mneg{}c\_b\_d))))



Date html generated: 2016_10_26-AM-07_45_39
Last ObjectModification: 2016_07_12-AM-08_11_56

Theory : euclidean!geometry


Home Index