Nuprl Lemma : eu-cong-angle-symm

e:EuclideanPlane. ∀a,b,c:Point.  abc cba supposing (a b ∈ Point)) ∧ (c b ∈ Point))


Proof




Definitions occuring in Statement :  eu-cong-angle: abc xyz euclidean-plane: EuclideanPlane eu-point: Point uimplies: supposing a all: x:A. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q not: ¬A implies:  Q false: False uall: [x:A]. B[x] euclidean-plane: EuclideanPlane prop: eu-cong-angle: abc xyz cand: c∧ B uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  eu-three-segment eu-length-flip eu-between-eq-symmetry eu-extend-exists exists_wf eu-congruent_wf eu-between-eq_wf eu-congruent-flip eu-congruent-iff-length euclidean-plane_wf equal_wf not_wf eu-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination equalityEquality lemma_by_obid isectElimination setElimination rename hypothesis productEquality because_Cache independent_pairFormation independent_functionElimination equalitySymmetry dependent_set_memberEquality independent_isectElimination dependent_pairFormation equalityTransitivity

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    abc  =  cba  supposing  (\mneg{}(a  =  b))  \mwedge{}  (\mneg{}(c  =  b))



Date html generated: 2016_06_16-PM-01_32_01
Last ObjectModification: 2016_05_23-AM-11_11_03

Theory : euclidean!geometry


Home Index