Nuprl Lemma : eu-cong-angle-symm
∀e:EuclideanPlane. ∀a,b,c:Point.  abc = cba supposing (¬(a = b ∈ Point)) ∧ (¬(c = b ∈ Point))
Proof
Definitions occuring in Statement : 
eu-cong-angle: abc = xyz
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
eu-cong-angle: abc = xyz
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
eu-three-segment, 
eu-length-flip, 
eu-between-eq-symmetry, 
eu-extend-exists, 
exists_wf, 
eu-congruent_wf, 
eu-between-eq_wf, 
eu-congruent-flip, 
eu-congruent-iff-length, 
euclidean-plane_wf, 
equal_wf, 
not_wf, 
eu-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
equalityEquality, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
productEquality, 
because_Cache, 
independent_pairFormation, 
independent_functionElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
equalityTransitivity
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    abc  =  cba  supposing  (\mneg{}(a  =  b))  \mwedge{}  (\mneg{}(c  =  b))
Date html generated:
2016_06_16-PM-01_32_01
Last ObjectModification:
2016_05_23-AM-11_11_03
Theory : euclidean!geometry
Home
Index