Nuprl Lemma : eu-congruent-between-implies-equal
∀e:EuclideanPlane. ∀[a,b,c,x:Point].  (b = x ∈ Point) supposing (a_b_c and ab=ax and bc=xc)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
, 
false: False
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
Lemmas referenced : 
stable_point-eq, 
eu-between-eq_wf, 
eu-congruent_wf, 
eu-congruence-identity-sym, 
equal_wf, 
eu-point_wf, 
not_wf, 
euclidean-plane_wf, 
eu-congruent-refl, 
eu-congruent-iff-length, 
eu-length-flip, 
eu-inner-five-segment
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
voidElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
dependent_functionElimination, 
productElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,x:Point].    (b  =  x)  supposing  (a\_b\_c  and  ab=ax  and  bc=xc)
Date html generated:
2016_10_26-AM-07_42_26
Last ObjectModification:
2016_07_12-AM-08_08_42
Theory : euclidean!geometry
Home
Index