Nuprl Lemma : eu-perp-three

e:EuclideanPlane. ∀x,a,b,c:Point.  (Perp-in(x; ba; ca)  (x a ∈ Point))


Proof




Definitions occuring in Statement :  eu-perp-in: Perp-in(x; ab; cd) euclidean-plane: EuclideanPlane eu-point: Point all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q eu-perp-in: Perp-in(x; ab; cd) and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane iff: ⇐⇒ Q eu-colinear-set: eu-colinear-set(e;L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m eu-perpendicular: Per(a;b;c) exists: x:A. B[x] uimplies: supposing a eu-midpoint: a=m=b
Lemmas referenced :  eu-between-eq-same2 eu-congruence-identity-sym lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma eu-colinear-is-colinear-set eu-colinear-def euclidean-plane_wf eu-point_wf eu-perp-in_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin hypothesis lemma_by_obid isectElimination hypothesisEquality setElimination rename dependent_functionElimination because_Cache independent_functionElimination sqequalRule isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation introduction imageMemberEquality baseClosed independent_isectElimination equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}x,a,b,c:Point.    (Perp-in(x;  ba;  ca)  {}\mRightarrow{}  (x  =  a))



Date html generated: 2016_05_18-AM-06_43_34
Last ObjectModification: 2016_01_16-PM-10_28_45

Theory : euclidean!geometry


Home Index