Nuprl Lemma : eu-sas
∀e:EuclideanPlane. ∀a,b,c,A,B,C:Point.
  ((ab=AB ∧ ac=AC) ∧ bac = BAC) 
⇒ bc=BC supposing Triangle(a;b;c) ∧ Triangle(A;B;C)
Proof
Definitions occuring in Statement : 
eu-cong-angle: abc = xyz
, 
eu-tri: Triangle(a;b;c)
, 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
and: P ∧ Q
, 
eu-tri: Triangle(a;b;c)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
eu-cong-angle: abc = xyz
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
Lemmas referenced : 
eu-inner-five-segment', 
eu-five-segment', 
eu-inner-three-segment, 
eu-congruent-trivial, 
equal_wf, 
eu-length-flip, 
eu-congruent-iff-length, 
eu-between-eq-symmetry, 
euclidean-plane_wf, 
eu-tri_wf, 
eu-cong-angle_wf, 
eu-congruent_wf, 
eu-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
equalityEquality, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
productEquality, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,A,B,C:Point.
    ((ab=AB  \mwedge{}  ac=AC)  \mwedge{}  bac  =  BAC)  {}\mRightarrow{}  bc=BC  supposing  Triangle(a;b;c)  \mwedge{}  Triangle(A;B;C)
Date html generated:
2016_06_16-PM-01_32_40
Last ObjectModification:
2016_06_01-PM-02_41_14
Theory : euclidean!geometry
Home
Index