Nuprl Lemma : eu-sas

e:EuclideanPlane. ∀a,b,c,A,B,C:Point.
  ((ab=AB ∧ ac=AC) ∧ bac BAC)  bc=BC supposing Triangle(a;b;c) ∧ Triangle(A;B;C)


Proof




Definitions occuring in Statement :  eu-cong-angle: abc xyz eu-tri: Triangle(a;b;c) euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uimplies: supposing a all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q eu-tri: Triangle(a;b;c) not: ¬A implies:  Q false: False uall: [x:A]. B[x] euclidean-plane: EuclideanPlane prop: eu-cong-angle: abc xyz exists: x:A. B[x] uiff: uiff(P;Q)
Lemmas referenced :  eu-inner-five-segment' eu-five-segment' eu-inner-three-segment eu-congruent-trivial equal_wf eu-length-flip eu-congruent-iff-length eu-between-eq-symmetry euclidean-plane_wf eu-tri_wf eu-cong-angle_wf eu-congruent_wf eu-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination equalityEquality lemma_by_obid isectElimination setElimination rename hypothesis productEquality because_Cache independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,A,B,C:Point.
    ((ab=AB  \mwedge{}  ac=AC)  \mwedge{}  bac  =  BAC)  {}\mRightarrow{}  bc=BC  supposing  Triangle(a;b;c)  \mwedge{}  Triangle(A;B;C)



Date html generated: 2016_06_16-PM-01_32_40
Last ObjectModification: 2016_06_01-PM-02_41_14

Theory : euclidean!geometry


Home Index