Nuprl Lemma : line-circle-continuity

e:EuclideanPlane. ∀a,b,p:Point. ∀q:{q:Point| ¬(q p ∈ Point)} .
  ((∃x:{x:Point| a_x_b ∧ (x b ∈ Point))} . ∃y:{y:Point| a_b_y} (ap=ax ∧ aq=ay))
   (∃y,z:Point. (ay=ab ∧ az=ab ∧ z_p_q ∧ p_y_q ∧ (y z ∈ Point)))))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: cand: c∧ B not: ¬A false: False top: Top euclidean-axioms: euclidean-axioms(e) sq_stable: SqStable(P) squash: T let: let pi1: fst(t) pi2: snd(t)
Lemmas referenced :  sq_stable__not sq_stable__eu-between-eq sq_stable__eu-congruent sq_stable__and squash_wf euclidean-plane_wf set_wf exists_wf pi2_wf top_wf subtype_rel_product pi1_wf_top eu-congruent_wf equal_wf not_wf eu-between-eq_wf and_wf eu-point_wf subtype_rel_sets eu-line-circle_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut lemma_by_obid isectElimination because_Cache hypothesisEquality applyEquality setElimination rename hypothesis sqequalRule lambdaEquality independent_isectElimination setEquality dependent_set_memberEquality independent_pairFormation independent_functionElimination voidElimination productEquality isect_memberEquality voidEquality equalityEquality equalityTransitivity equalitySymmetry dependent_functionElimination introduction imageMemberEquality baseClosed imageElimination isectEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,p:Point.  \mforall{}q:\{q:Point|  \mneg{}(q  =  p)\}  .
    ((\mexists{}x:\{x:Point|  a\_x\_b  \mwedge{}  (\mneg{}(x  =  b))\}  .  \mexists{}y:\{y:Point|  a\_b\_y\}  .  (ap=ax  \mwedge{}  aq=ay))
    {}\mRightarrow{}  (\mexists{}y,z:Point.  (ay=ab  \mwedge{}  az=ab  \mwedge{}  z\_p\_q  \mwedge{}  p\_y\_q  \mwedge{}  (\mneg{}(y  =  z)))))



Date html generated: 2016_05_18-AM-06_41_29
Last ObjectModification: 2016_01_16-PM-10_30_26

Theory : euclidean!geometry


Home Index