Nuprl Lemma : eu-eq_dist-axiomsC-five-segment

e:EuclideanPlane. ∀x,y,z,x',y',z',u,u':Point.
  (Dcong(e;x;y;x';y')
   Dcong(e;y;z;y';z')
   Dcong(e;x;u;x';u')
   Dcong(e;y;u;y';u')
   (Dbet(e;x;y;z) ∧ Dsep(e;x;y) ∧ Dsep(e;y;z))
   (Dbet(e;x';y';z') ∧ Dsep(e;x';y') ∧ Dsep(e;y';z'))
   Dcong(e;z;u;z';u'))


Proof




Definitions occuring in Statement :  dist-cong: Dcong(g;a;b;c;d) dist-bet: Dbet(g;a;b;c) dist-sep: Dsep(g;a;b) euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T guard: {T} cand: c∧ B uall: [x:A]. B[x] subtype_rel: A ⊆B prop: iff: ⇐⇒ Q uimplies: supposing a rev_implies:  Q
Lemmas referenced :  lsep-all-sym Euclid-Prop20_cycle geo-lsep_wf Dcong-iff-cong dist-bet_wf dist-sep_wf dist-cong_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf Dbet-to-between geo-five-segment Dsep-iff-sep
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis because_Cache universeIsType isectElimination applyEquality sqequalRule productIsType inhabitedIsType instantiate independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}x,y,z,x',y',z',u,u':Point.
    (Dcong(e;x;y;x';y')
    {}\mRightarrow{}  Dcong(e;y;z;y';z')
    {}\mRightarrow{}  Dcong(e;x;u;x';u')
    {}\mRightarrow{}  Dcong(e;y;u;y';u')
    {}\mRightarrow{}  (Dbet(e;x;y;z)  \mwedge{}  Dsep(e;x;y)  \mwedge{}  Dsep(e;y;z))
    {}\mRightarrow{}  (Dbet(e;x';y';z')  \mwedge{}  Dsep(e;x';y')  \mwedge{}  Dsep(e;y';z'))
    {}\mRightarrow{}  Dcong(e;z;u;z';u'))



Date html generated: 2019_10_16-PM-02_59_00
Last ObjectModification: 2019_06_05-PM-04_11_15

Theory : euclidean!plane!geometry


Home Index