Nuprl Lemma : eu-eq_dist-axiomsC-five-segment
∀e:EuclideanPlane. ∀x,y,z,x',y',z',u,u':Point.
  (Dcong(e;x;y;x';y')
  
⇒ Dcong(e;y;z;y';z')
  
⇒ Dcong(e;x;u;x';u')
  
⇒ Dcong(e;y;u;y';u')
  
⇒ (Dbet(e;x;y;z) ∧ Dsep(e;x;y) ∧ Dsep(e;y;z))
  
⇒ (Dbet(e;x';y';z') ∧ Dsep(e;x';y') ∧ Dsep(e;y';z'))
  
⇒ Dcong(e;z;u;z';u'))
Proof
Definitions occuring in Statement : 
dist-cong: Dcong(g;a;b;c;d)
, 
dist-bet: Dbet(g;a;b;c)
, 
dist-sep: Dsep(g;a;b)
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
guard: {T}
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
lsep-all-sym, 
Euclid-Prop20_cycle, 
geo-lsep_wf, 
Dcong-iff-cong, 
dist-bet_wf, 
dist-sep_wf, 
dist-cong_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
Dbet-to-between, 
geo-five-segment, 
Dsep-iff-sep
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
universeIsType, 
isectElimination, 
applyEquality, 
sqequalRule, 
productIsType, 
inhabitedIsType, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}x,y,z,x',y',z',u,u':Point.
    (Dcong(e;x;y;x';y')
    {}\mRightarrow{}  Dcong(e;y;z;y';z')
    {}\mRightarrow{}  Dcong(e;x;u;x';u')
    {}\mRightarrow{}  Dcong(e;y;u;y';u')
    {}\mRightarrow{}  (Dbet(e;x;y;z)  \mwedge{}  Dsep(e;x;y)  \mwedge{}  Dsep(e;y;z))
    {}\mRightarrow{}  (Dbet(e;x';y';z')  \mwedge{}  Dsep(e;x';y')  \mwedge{}  Dsep(e;y';z'))
    {}\mRightarrow{}  Dcong(e;z;u;z';u'))
Date html generated:
2019_10_16-PM-02_59_00
Last ObjectModification:
2019_06_05-PM-04_11_15
Theory : euclidean!plane!geometry
Home
Index