Nuprl Lemma : geo-between-cong-tri-exists
∀[e:BasicGeometry]. ∀[a,b,c,a',c':Point].
  (a_b_c 
⇒ ac ≅ a'c' 
⇒ (¬¬(∃b':Point. (Cong3(abc,a'b'c') ∧ Colinear(a';b';c')))))
Proof
Definitions occuring in Statement : 
geo-cong-tri: Cong3(abc,a'b'c')
, 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
basic-geometry: BasicGeometry
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
geo-eq: a ≡ b
, 
or: P ∨ Q
, 
stable: Stable{P}
, 
subtract: n - m
, 
cons: [a / b]
, 
select: L[n]
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
top: Top
, 
l_all: (∀x∈L.P[x])
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
geo-strict-between: a-b-c
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
geo-between_wf, 
geo-congruent_wf, 
geo-colinear_wf, 
geo-cong-tri_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry-_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
basic-geometry--subtype, 
geo-point_wf, 
exists_wf, 
not_wf, 
minimal-not-not-excluded-middle, 
geo-between_functionality, 
geo-eq_weakening, 
geo-congruent_functionality, 
minimal-double-negation-hyp-elim, 
geo-sep_wf, 
or_wf, 
false_wf, 
stable__not, 
geo-sep_functionality, 
geo-strict-between_wf, 
geo-eq_wf, 
lelt_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
geo-between-implies-colinear, 
geo-colinear-is-colinear-set, 
geo-length-flip, 
geo-congruent-iff-length, 
geo-congruent-between-exists, 
geo-colinear-same, 
geo-congruent-trivial
Rules used in proof : 
isect_memberEquality, 
dependent_functionElimination, 
because_Cache, 
rename, 
setElimination, 
productEquality, 
lambdaEquality, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
voidElimination, 
independent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
thin, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
unionElimination, 
functionEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
voidEquality, 
equalitySymmetry, 
equalityTransitivity, 
independent_pairFormation, 
dependent_pairFormation, 
inrFormation, 
inlFormation, 
andLevelFunctionality, 
existsFunctionality, 
addLevel
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,a',c':Point].
    (a\_b\_c  {}\mRightarrow{}  ac  \00D0  a'c'  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}b':Point.  (Cong3(abc,a'b'c')  \mwedge{}  Colinear(a';b';c')))))
Date html generated:
2017_10_02-PM-06_24_46
Last ObjectModification:
2017_08_05-PM-04_18_37
Theory : euclidean!plane!geometry
Home
Index