Nuprl Lemma : geo-between-cong-tri-exists

[e:BasicGeometry]. ∀[a,b,c,a',c':Point].
  (a_b_c  ac ≅ a'c'  (¬¬(∃b':Point. (Cong3(abc,a'b'c') ∧ Colinear(a';b';c')))))


Proof




Definitions occuring in Statement :  geo-cong-tri: Cong3(abc,a'b'c') basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-between: a_b_c geo-point: Point uall: [x:A]. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  exists: x:A. B[x] so_apply: x[s] basic-geometry: BasicGeometry and: P ∧ Q so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: false: False not: ¬A implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q all: x:A. B[x] geo-eq: a ≡ b or: P ∨ Q stable: Stable{P} subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) uiff: uiff(P;Q) cand: c∧ B geo-cong-tri: Cong3(abc,a'b'c') geo-strict-between: a-b-c rev_implies:  Q
Lemmas referenced :  geo-between_wf geo-congruent_wf geo-colinear_wf geo-cong-tri_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry-_wf basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype basic-geometry--subtype geo-point_wf exists_wf not_wf minimal-not-not-excluded-middle geo-between_functionality geo-eq_weakening geo-congruent_functionality minimal-double-negation-hyp-elim geo-sep_wf or_wf false_wf stable__not geo-sep_functionality geo-strict-between_wf geo-eq_wf lelt_wf length_of_nil_lemma length_of_cons_lemma geo-between-implies-colinear geo-colinear-is-colinear-set geo-length-flip geo-congruent-iff-length geo-congruent-between-exists geo-colinear-same geo-congruent-trivial
Rules used in proof :  isect_memberEquality dependent_functionElimination because_Cache rename setElimination productEquality lambdaEquality sqequalRule independent_isectElimination instantiate applyEquality hypothesisEquality isectElimination extract_by_obid voidElimination independent_functionElimination sqequalHypSubstitution hypothesis thin lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination unionElimination functionEquality baseClosed imageMemberEquality natural_numberEquality dependent_set_memberEquality voidEquality equalitySymmetry equalityTransitivity independent_pairFormation dependent_pairFormation inrFormation inlFormation andLevelFunctionality existsFunctionality addLevel

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,a',c':Point].
    (a\_b\_c  {}\mRightarrow{}  ac  \00D0  a'c'  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}b':Point.  (Cong3(abc,a'b'c')  \mwedge{}  Colinear(a';b';c')))))



Date html generated: 2017_10_02-PM-06_24_46
Last ObjectModification: 2017_08_05-PM-04_18_37

Theory : euclidean!plane!geometry


Home Index